网络流 java算法
时间: 2023-10-28 20:07:06 浏览: 167
网络流是一种图论算法,用于解决最大流问题。Java中可以使用Dinic算法或者Edmonds-Karp算法实现网络流。
Dinic算法的基本思想是通过多次增广路径来求解最大流,时间复杂度为O(V^2E)。Edmonds-Karp算法则是在BFS的基础上进行增广,时间复杂度为O(VE^2)。
以下是Java实现Dinic算法的示例代码:
```java
import java.util.*;
public class Dinic {
static int N = 510, M = 100010, INF = 0x3f3f3f3f;
static int n, m, S, T;
static int h[] = new int[N], e[] = new int[M], f[] = new int[M], ne[] = new int[M], idx;
static int d[] = new int[N], cur[] = new int[N];
static boolean st[] = new boolean[N];
public static void main(String args[]) {
Scanner scan = new Scanner(System.in);
n = scan.nextInt();
m = scan.nextInt();
S = 1;
T = n;
Arrays.fill(h, -1);
while (m-- > 0) {
int a = scan.nextInt(), b = scan.nextInt(), c = scan.nextInt();
add(a, b, c);
}
System.out.println(dinic());
}
static void add(int a, int b, int c) {
e[idx] = b;
f[idx] = c;
ne[idx] = h[a];
h[a] = idx++;
e[idx] = a;
f[idx] = 0;
ne[idx] = h[b];
h[b] = idx++;
}
static boolean bfs() {
Arrays.fill(d, -1);
Queue<Integer> q = new LinkedList<>();
q.offer(S);
d[S] = 0;
cur[S] = h[S];
while (!q.isEmpty()) {
int t = q.poll();
for (int i = h[t]; i != -1; i = ne[i]) {
int ver = e[i];
if (d[ver] == -1 && f[i] > 0) {
d[ver] = d[t] + 1;
cur[ver] = h[ver];
if (ver == T) return true;
q.offer(ver);
}
}
}
return false;
}
static int find(int u, int limit) {
if (u == T) return limit;
int flow = 0;
for (int i = cur[u]; i != -1 && flow < limit; i = ne[i]) {
cur[u] = i;
int ver = e[i];
if (d[ver] == d[u] + 1 && f[i] > 0) {
int t = find(ver, Math.min(f[i], limit - flow));
if (t == 0) d[ver] = -1;
f[i] -= t;
f[i ^ 1] += t;
flow += t;
}
}
return flow;
}
static int dinic() {
int r = 0, flow;
while (bfs()) while ((flow = find(S, INF)) != 0) r += flow;
return r;
}
}
```
阅读全文