void HT93LC46_EWEN(void) //ht93lc46 erase and write enable { uchar ewi,ewen_code=0x98; _nop_(); HT93LC46_CS=0; HT93LC46_CLK=0; _nop_(); HT93LC46_CS=1; //sending operation code 0x98=10011000 and 00 10bits _nop_(); for(ewi=0;ewi<8;ewi++) { if(ewen_code>=0x80) HT93LC46_DI=1; else HT93LC46_DI=0; _nop_(); HT93LC46_CLK=1; _nop_(); HT93LC46_CLK=0; _nop_(); ewen_code<<=1; } HT93LC46_CLK=1; _nop_(); HT93LC46_CLK=0; _nop_(); HT93LC46_CLK=1; _nop_(); HT93LC46_CS=0; }

时间: 2024-04-13 15:26:22 浏览: 15
这是一个函数,用于使HT93LC46芯片进入擦除和写入使能状态。函数内部首先定义了一些变量,包括ewi和ewen_code。然后将HT93LC46_CS拉低,HT93LC46_CLK拉低,进行一些延时操作。 接下来,将HT93LC46_CS拉高,发送操作码0x98(二进制为10011000)和00两位。在一个循环中,逐位发送ewen_code的值到HT93LC46_DI引脚。如果ewen_code的最高位为1,则将HT93LC46_DI设置为1,否则设置为0。之后进行一些延时操作,并将ewen_code左移1位。 最后将HT93LC46_CLK拉高,并进行一些延时操作。然后将HT93LC46_CS拉低,函数执行结束。
相关问题

void DELAY_TIMES(uchar time1); void SYSTEM_INITIAL(void); void HT1621_SEND_COMMAND(uchar command); void HT1621_WRITE_DATA(uchar write_addr,uchar write_data); void HT1621_CLEAR_MEMORY(void); void HT1621_SHOW_MEMORY(void); void HT1621_SUCCESSIVE_DISPLAY(void); void HT1621_INITIAL(void); void HT93LC46_EWEN(void) ; void HT93LC46_EWDS(void); void HT93LC46_WRITE_ONE_BYTE(uchar ht93lc46_addr,uchar ht93lc46_data); uchar HT93LC46_READ_ONE_BYTE(uchar ht93lc46_addr1);

这段代码是函数的声明部分,用来声明一些函数的原型。函数原型告诉编译器函数的名称、参数类型和返回类型,但没有具体的函数实现。 下面是对这些函数声明的简要说明: - `DELAY_TIMES(uchar time1)`: 延时函数,用于延时一定的时间,参数`time1`表示延时的时间(可能是以某种单位表示)。 - `SYSTEM_INITIAL(void)`: 系统初始化函数,用于初始化系统的各个组件和变量。 - `HT1621_SEND_COMMAND(uchar command)`: HT1621发送指令函数,用于向HT1621驱动芯片发送特定的指令,参数`command`表示要发送的指令。 - `HT1621_WRITE_DATA(uchar write_addr,uchar write_data)`: HT1621写入数据函数,用于向HT1621驱动芯片的特定地址写入数据,参数`write_addr`表示写入的地址,参数`write_data`表示要写入的数据。 - `HT1621_CLEAR_MEMORY(void)`: HT1621清除存储器函数,用于清除HT1621驱动芯片的存储器中的数据。 - `HT1621_SHOW_MEMORY(void)`: HT1621显示存储器函数,用于显示HT1621驱动芯片存储器中的数据。 - `HT1621_SUCCESSIVE_DISPLAY(void)`: HT1621连续显示函数,用于在HT1621驱动芯片上进行连续显示。 - `HT1621_INITIAL(void)`: HT1621初始化函数,用于初始化HT1621驱动芯片的各个寄存器和设置。 - `HT93LC46_EWEN(void)`: HT93LC46使能写入函数,用于使HT93LC46 EEPROM芯片进入写入模式。 - `HT93LC46_EWDS(void)`: HT93LC46禁止写入函数,用于禁止HT93LC46 EEPROM芯片的写入模式。 - `HT93LC46_WRITE_ONE_BYTE(uchar ht93lc46_addr,uchar ht93lc46_data)`: HT93LC46写入一个字节函数,用于向HT93LC46 EEPROM芯片的特定地址写入一个字节的数据。 - `HT93LC46_READ_ONE_BYTE(uchar ht93lc46_addr1)`: HT93LC46读取一个字节函数,用于从HT93LC46 EEPROM芯片的特定地址读取一个字节的数据。 这些函数的具体实现代码需要在其他地方查找。希望对您有所帮助!如果还有其他问题,请随时提问。

HT93LC46_EWEN(); DELAY_TIMES(0x0A); if(calibration_flag==0) { HT93LC46_WRITE_ONE_BYTE(0x00, 0x4B); Mindata.One_4byte=finaldata.One_4byte; DELAY_TIMES(0x0A); HT93LC46_WRITE_ONE_BYTE(0x01, Mindata.Four_1byte[0]); DELAY_TIMES(0x0A); HT93LC46_WRITE_ONE_BYTE(0x02, Mindata.Four_1byte[1]); DELAY_TIMES(0x0A); HT93LC46_WRITE_ONE_BYTE(0x03, Mindata.Four_1byte[2]); DELAY_TIMES(0x0A); HT93LC46_WRITE_ONE_BYTE(0x04, Mindata.Four_1byte[3]); DELAY_TIMES(0x0A); calibration_flag=1; } else { Maxdata.One_4byte=finaldata.One_4byte; HT93LC46_WRITE_ONE_BYTE(0x05,Maxdata.Four_1byte[0]); DELAY_TIMES(0x0A); HT93LC46_WRITE_ONE_BYTE(0x06,Maxdata.Four_1byte[1]); DELAY_TIMES(0x0A); HT93LC46_WRITE_ONE_BYTE(0x07, Maxdata.Four_1byte[2]); DELAY_TIMES(0x0A); HT93LC46_WRITE_ONE_BYTE(0x08, Maxdata.Four_1byte[3]); DELAY_TIMES(0x0A); Scalevalue.float_one_4byte=500000; Dividendvalue.float_one_4byte=(Maxdata.One_4byte-Mindata.One_4byte); Scalevalue.float_one_4byte=Dividendvalue.float_one_4byte/Scalevalue.float_one_4byte; HT93LC46_WRITE_ONE_BYTE(0x09, Scalevalue.float_four_1byte[0]); DELAY_TIMES(0x0A); HT93LC46_WRITE_ONE_BYTE(0x0A, Scalevalue.float_four_1byte[1]); DELAY_TIMES(0x0A); HT93LC46_WRITE_ONE_BYTE(0x0B, Scalevalue.float_four_1byte[2]); DELAY_TIMES(0x0A); HT93LC46_WRITE_ONE_BYTE(0x0C, Scalevalue.float_four_1byte[3]); DELAY_TIMES(0x0A); calibration_flag=0; } HT93LC46_EWDS(); DELAY_TIMES(0x0A); }

这段代码是关于HT93LC46 EEPROM芯片的操作。根据代码的逻辑,首先执行了HT93LC46_EWEN()函数,该函数用于使能EEPROM的写入操作。然后通过一系列的操作将数据写入到EEPROM中。 在calibration_flag为0的情况下,首先通过HT93LC46_WRITE_ONE_BYTE函数将0x4B写入到地址为0x00的位置,然后将finaldata.One_4byte的值赋给Mindata.One_4byte变量。接着将Mindata.Four_1byte数组中的四个字节分别写入到地址为0x01、0x02、0x03和0x04的位置。 在calibration_flag不为0的情况下,将finaldata.One_4byte的值赋给Maxdata.One_4byte变量。然后将Maxdata.Four_1byte数组中的四个字节分别写入到地址为0x05、0x06、0x07和0x08的位置。接着计算Scalevalue.float_one_4byte的值为500000,并将(Maxdata.One_4byte-Mindata.One_4byte)的结果赋给Dividendvalue.float_one_4byte变量。然后通过除法计算得到Scalevalue.float_one_4byte的值,并将Scalevalue.float_four_1byte数组中的四个字节分别写入到地址为0x09、0x0A、0x0B和0x0C的位置。 最后执行HT93LC46_EWDS()函数,用于禁止EEPROM的写入操作,然后延时0x0A后结束函数的执行。

相关推荐

zip
基于tensorflow2.x卷积神经网络字符型验证码识别 卷积神经网络(Convolutional Neural Networks, CNNs 或 ConvNets)是一类深度神经网络,特别擅长处理图像相关的机器学习和深度学习任务。它们的名称来源于网络中使用了一种叫做卷积的数学运算。以下是卷积神经网络的一些关键组件和特性: 卷积层(Convolutional Layer): 卷积层是CNN的核心组件。它们通过一组可学习的滤波器(或称为卷积核、卷积器)在输入图像(或上一层的输出特征图)上滑动来工作。 滤波器和图像之间的卷积操作生成输出特征图,该特征图反映了滤波器所捕捉的局部图像特性(如边缘、角点等)。 通过使用多个滤波器,卷积层可以提取输入图像中的多种特征。 激活函数(Activation Function): 在卷积操作之后,通常会应用一个激活函数(如ReLU、Sigmoid或tanh)来增加网络的非线性。 池化层(Pooling Layer): 池化层通常位于卷积层之后,用于降低特征图的维度(空间尺寸),减少计算量和参数数量,同时保持特征的空间层次结构。 常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling)。 全连接层(Fully Connected Layer): 在CNN的末端,通常会有几层全连接层(也称为密集层或线性层)。这些层中的每个神经元都与前一层的所有神经元连接。 全连接层通常用于对提取的特征进行分类或回归。 训练过程: CNN的训练过程与其他深度学习模型类似,通过反向传播算法和梯度下降(或其变种)来优化网络参数(如滤波器权重和偏置)。 训练数据通常被分为多个批次(mini-batches),并在每个批次上迭代更新网络参数。 应用: CNN在计算机视觉领域有着广泛的应用,包括图像分类、目标检测、图像分割、人脸识别等。 它们也已被扩展到处理其他类型的数据,如文本(通过卷积一维序列)和音频(通过卷积时间序列)。 随着深度学习技术的发展,卷积神经网络的结构和设计也在不断演变,出现了许多新的变体和改进,如残差网络(ResNet)、深度卷积生成对抗网络(DCGAN)等。

最新推荐

recommend-type

毕业设计基于STC12C5A、SIM800C、GPS的汽车防盗报警系统源码.zip

STC12C5A通过GPS模块获取当前定位信息,如果车辆发生异常震动或车主打来电话(主动请求定位),将通过GSM发送一条定位短信到车主手机,车主点击链接默认打开网页版定位,如果有安装高德地图APP将在APP中打开并展示汽车当前位置 GPS模块可以使用多家的GPS模块,需要注意的是,当前程序对应的是GPS北斗双模芯片,故只解析 GNRMC数据,如果你使用GPS芯片则应改为GPRMC数据即可。 系统在初始化的时候会持续短鸣,每初始化成功一部分后将长鸣一声,如果持续短鸣很久(超过20分钟),建议通过串口助手查看系统输出的调试信息,系统串口默认输出从初始化开始的所有运行状态信息。 不过更建议你使用SIM868模块,集成GPS.GSM.GPRS,使用更加方便
recommend-type

基于tensorflow2.x卷积神经网络字符型验证码识别.zip

基于tensorflow2.x卷积神经网络字符型验证码识别 卷积神经网络(Convolutional Neural Networks, CNNs 或 ConvNets)是一类深度神经网络,特别擅长处理图像相关的机器学习和深度学习任务。它们的名称来源于网络中使用了一种叫做卷积的数学运算。以下是卷积神经网络的一些关键组件和特性: 卷积层(Convolutional Layer): 卷积层是CNN的核心组件。它们通过一组可学习的滤波器(或称为卷积核、卷积器)在输入图像(或上一层的输出特征图)上滑动来工作。 滤波器和图像之间的卷积操作生成输出特征图,该特征图反映了滤波器所捕捉的局部图像特性(如边缘、角点等)。 通过使用多个滤波器,卷积层可以提取输入图像中的多种特征。 激活函数(Activation Function): 在卷积操作之后,通常会应用一个激活函数(如ReLU、Sigmoid或tanh)来增加网络的非线性。 池化层(Pooling Layer): 池化层通常位于卷积层之后,用于降低特征图的维度(空间尺寸),减少计算量和参数数量,同时保持特征的空间层次结构。 常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling)。 全连接层(Fully Connected Layer): 在CNN的末端,通常会有几层全连接层(也称为密集层或线性层)。这些层中的每个神经元都与前一层的所有神经元连接。 全连接层通常用于对提取的特征进行分类或回归。 训练过程: CNN的训练过程与其他深度学习模型类似,通过反向传播算法和梯度下降(或其变种)来优化网络参数(如滤波器权重和偏置)。 训练数据通常被分为多个批次(mini-batches),并在每个批次上迭代更新网络参数。 应用: CNN在计算机视觉领域有着广泛的应用,包括图像分类、目标检测、图像分割、人脸识别等。 它们也已被扩展到处理其他类型的数据,如文本(通过卷积一维序列)和音频(通过卷积时间序列)。 随着深度学习技术的发展,卷积神经网络的结构和设计也在不断演变,出现了许多新的变体和改进,如残差网络(ResNet)、深度卷积生成对抗网络(DCGAN)等。
recommend-type

【三维装箱】遗传和模拟退火算法求解三维装箱优化问题【含Matlab源码 031期】.zip

【三维装箱】遗传和模拟退火算法求解三维装箱优化问题【含Matlab源码 031期】.zip
recommend-type

自己编写的python 程序计算cpk/ppk

cpk&ppk python 小程序,品友点评
recommend-type

基于Springboot开发的分布式抽奖系统.zip

基于springboot的java毕业&课程设计
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解答下列问题:S—>S;T|T;T—>a 构造任意项目集规范族,构造LR(0)分析表,并分析a;a

对于这个文法,我们可以构造以下项目集规范族: I0: S -> .S S -> .T T -> .a I1: S -> S. [$ T -> T. [$ I2: S -> T. I3: S -> S.;S S -> S.;T T -> T.;a 其中,点(.)表示已经被扫描过的符号,;$表示输入串的结束符号。 根据项目集规范族,我们可以构造出LR(0)分析表: 状态 | a | $ ---- | - | - I0 | s3| I1 | |acc I2 | | 其中s3表示移进到状态3,acc表示接受。在分析字符串a;a时,我们可以按照以下步骤进行
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。