tph-yolov5代码复现
时间: 2023-10-30 07:05:55 浏览: 185
yolov5-5版本代码
您好!对于 TPH-YOLOv5 的代码复现,可以按照以下步骤进行操作:
1. 克隆源代码库:首先,将 TPH-YOLOv5 的源代码库克隆到本地。可以通过在终端中执行以下命令完成:
```
git clone https://github.com/tphanson/yolov5.git
```
2. 安装依赖项:进入克隆下来的 yolov5 文件夹,并使用以下命令安装所有依赖项:
```
cd yolov5
pip install -r requirements.txt
```
3. 数据准备:将您的训练数据集放在 `data` 文件夹下,并按照要求的格式进行组织。具体的数据集准备方法可以参考 yolov5 官方文档中的说明。
4. 配置模型:在 `models` 文件夹中,可以根据自己的需求选择合适的 YOLOv5 模型结构和超参数配置文件。
5. 开始训练:通过运行以下命令开始训练模型:
```
python train.py --img {image size} --batch {batch size} --epochs {num epochs} --data {path to data.yaml} --cfg {path to model.yaml}
```
其中,`image size` 是输入图像的尺寸,`batch size` 是每个批次的图像数量,`num epochs` 是训练的迭代次数,`path to data.yaml` 是数据集的配置文件路径,`path to model.yaml` 是模型的配置文件路径。
6. 模型推理:训练完成后,您可以使用训练得到的权重文件进行目标检测推理。使用以下命令运行推理脚本:
```
python detect.py --source {path to input image/video} --weights {path to trained weights} --conf {detection threshold}
```
其中,`path to input image/video` 是输入图像/视频的路径,`path to trained weights` 是训练得到的权重文件路径,`detection threshold` 是目标检测的置信度阈值。
以上是 TPH-YOLOv5 代码复现的基本步骤。根据您的实际需求,可能还需要对数据集、模型和训练参数进行进一步的配置和调整。希望这些步骤对您有所帮助!如果还有其他问题,请随时提问。
阅读全文