粒子群优化CNN-LSTM写个代码示例
时间: 2024-04-23 22:20:06 浏览: 135
粒子群优化CNN-LSTM是一种使用粒子群优化算法来优化CNN-LSTM网络的算法[^1]。下面是一个简单的代码示例,展示了如何使用粒子群优化算法来训练CNN-LSTM网络。
```python
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, LSTM, Dense, Flatten
from pyswarm import pso
# 定义CNN-LSTM模型
def create_model(input_shape):
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(LSTM(64))
model.add(Dense(10, activation='softmax'))
return model
# 定义损失函数
def loss_function(params, x_train, y_train):
input_shape = (x_train.shape, x_train.shape, x_train.shape)
model = create_model(input_shape)
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=params),
loss='categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=10, batch_size=32, verbose=0)
loss, _ = model.evaluate(x_train, y_train, verbose=0)
return loss
# 定义训练数据
x_train = np.random.rand(100, 10, 10, 3)
y_train = np.random.randint(0, 10, (100,))
# 定义参数范围
lb = [0.001] # 学习率下限
ub = [0.01] # 学习率上限
# 使用粒子群优化算法进行参数优化
params = pso(loss_function, lb, ub, args=(x_train, y_train))
print("Optimized learning rate:", params)
```
这个代码示例中,我们首先定义了一个CNN-LSTM模型,然后使用粒子群优化算法来优化模型的学习率。在优化过程中,我们使用了随机生成的训练数据来计算损失函数。最后,我们输出了优化得到的学习率。
阅读全文