import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression x=np.array([103,198,52,40]) r=np.array([0.28,0.21,0.23,0.25]) q=np.array([0.025,0.015,0.055,0.026]) p=np.array([0.01,0.02,0.045,0.065]) X=x y=x*(1+r)-x*(q+p) m = LinearRegression m.fit(X,y,4) plt.scatter(X[:, 0], y, color='blue', label='Actual') # 绘制拟合线 x_line = np.linspace(0, 6, 100) y_line = m.predict(np.column_stack((x_line, x_line*4))) plt.plot(x_line, y_line, color='red', label='Fitted') # 设置图形标签和标题 plt.xlabel('X') plt.ylabel('Y') plt.title('Multiple Linear Regression') # 添加图例 plt.legend() # 显示图形 plt.show()

时间: 2024-04-16 09:28:07 浏览: 20
在你的代码中,有几个地方需要进行修改: 1. `LinearRegression` 是一个类,你需要实例化一个对象来使用它,而不是直接使用类名。将 `m = LinearRegression` 修改为 `m = LinearRegression()`。 2. `m.fit(X,y,4)` 应该修改为 `m.fit(X.reshape(-1, 1), y.reshape(-1, 1))`。`fit()` 函数的参数应该是两个数组,并且需要将 `X` 和 `y` 改为二维数组形式。 3. `y_line = m.predict(np.column_stack((x_line, x_line*4)))` 应该修改为 `y_line = m.predict(np.column_stack((x_line, x_line*(1+r)-x_line*(q+p))))`。这样才能根据模型预测出适当的 y 值。 修改后的代码如下所示: ```python import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression x = np.array([103, 198, 52, 40]) r = np.array([0.28, 0.21, 0.23, 0.25]) q = np.array([0.025, 0.015, 0.055, 0.026]) p = np.array([0.01, 0.02, 0.045, 0.065]) X = x y = x * (1 + r) - x * (q + p) m = LinearRegression() m.fit(X.reshape(-1, 1), y.reshape(-1, 1)) plt.scatter(X[:, 0], y, color='blue', label='Actual') # 绘制拟合线 x_line = np.linspace(0, 6, 100) y_line = m.predict(np.column_stack((x_line, x_line*(1+r)-x_line*(q+p)))) plt.plot(x_line, y_line, color='red', label='Fitted') # 设置图形标签和标题 plt.xlabel('X') plt.ylabel('Y') plt.title('Multiple Linear Regression') # 添加图例 plt.legend() # 显示图形 plt.show() ``` 请尝试运行修改后的代码,并查看绘制的图形是否符合你的预期。

相关推荐

import numpy as np import pandas as pd from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt from termcolor import colored as cl import itertools from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from xgboost import XGBClassifier from sklearn.neural_network import MLPClassifier from sklearn.ensemble import VotingClassifier # 定义模型评估函数 def evaluate_model(y_true, y_pred): accuracy = accuracy_score(y_true, y_pred) precision = precision_score(y_true, y_pred, pos_label='Good') recall = recall_score(y_true, y_pred, pos_label='Good') f1 = f1_score(y_true, y_pred, pos_label='Good') print("准确率:", accuracy) print("精确率:", precision) print("召回率:", recall) print("F1 分数:", f1) # 读取数据集 data = pd.read_csv('F:\数据\大学\专业课\模式识别\大作业\数据集1\data clean Terklasifikasi baru 22 juli 2015 all.csv', skiprows=16, header=None) # 检查数据集 print(data.head()) # 划分特征向量和标签 X = data.iloc[:, :-1] y = data.iloc[:, -1] # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 6. XGBoost xgb = XGBClassifier(max_depth=4) y_test = np.array(y_test, dtype=int) xgb.fit(X_train, y_train) xgb_pred = xgb.predict(X_test) print("\nXGBoost评估结果:") evaluate_model(y_test, xgb_pred)

给出各拟合曲线的误差MSE:import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.stats import zscore import numpy as np from sklearn import linear_model from sklearn.preprocessing import PolynomialFeatures data = np.loadtxt('tb.txt', delimiter=',') # a=data[:,0] area = data[:, 0] price = data[:, 1] length = len(area) area = np.array(area).reshape([length, 1]) price = np.array(price) minx = min(area) maxx = max(area) x = np.arange(minx, maxx).reshape([-1, 1]) poly=PolynomialFeatures(degree=2) poly3=PolynomialFeatures(degree=3) poly4=PolynomialFeatures(degree=4) #poly5=PolynomialFeatures(degree=5) area_poly=poly.fit_transform(area) area_poly3=poly3.fit_transform(area) area_poly4=poly4.fit_transform(area) linear2 = linear_model.LinearRegression() linear2.fit(area_poly, price) linear3 = linear_model.LinearRegression() linear3.fit(area_poly3, price) linear4 = linear_model.LinearRegression() linear4.fit(area_poly4, price) #查看回归方程系数 print('Cofficients:',linear4.coef_) #查看回归方程截距 print('intercept',linear4.intercept_) plt.scatter(area, price, color='red') plt.plot(x, linear2.predict(poly.fit_transform(x)), color='blue') plt.plot(x, linear3.predict(poly3.fit_transform(x)), linestyle='--') plt.plot(x, linear4.predict(poly4.fit_transform(x)), linestyle='-.') plt.legend(['degree=0','degree=2','degree=3','degree=4']) plt.xlabel('Year') plt.ylabel('Price') plt.show() # 2022 year_2022 = np.array([[2022]]) area_2022_poly = poly.transform(year_2022) area_2022_poly3 = poly3.transform(year_2022) area_2022_poly4 = poly4.transform(year_2022) price_2022_degree2 = linear2.predict(area_2022_poly) price_2022_degree3 = linear3.predict(area_2022_poly3) price_2022_degree4 = linear4.predict(area_2022_poly4) print("Predicted price in 2022 (degree=2):", price_2022_degree2[0]) print("Predicted price in 2022 (degree=3):", price_2022_degree3[0]) print("Predicted price in 2022 (degree=4):", price_2022_degree4[0]) # 2023 year_2023 = np.array([[2023]]) area_2023_poly = poly.transform(year_2023) area_2023_poly3 = poly3.transform(year_2023) area_2023_poly4 = poly4.transform(year_2023) price_2023_degree2 = linear2.predict(area_2023_poly) price_2023_degree3 = linear3.predict(area_2023_poly3) price_2023_degree4 = linear4.predict(area_2023_poly4) print("Predicted price in 2023 (degree=2):", price_2023_degree2[0]) print("Predicted price in 2023 (degree=3):", price_2023_degree3[0]) print("Predicted price in 2023 (degree=4):", price_2023_degree4[0])

from sklearn import metrics from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from imblearn.combine import SMOTETomek from sklearn.metrics import auc, roc_curve, roc_auc_score from sklearn.feature_selection import SelectFromModel import pandas as pd import numpy as np import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix #1、数据输入 df_table_all = pd.read_csv(r"D:\trainafter.csv",index_col=0) #2、目标和特征区分 X = df_table_all.drop(["Y"],axis=1).values Y = np.array(df_table_all["Y"]) #3、按比例切割数据 X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.3,random_state=0) #4、样本平衡, st= SMOTETomek() X_train_st,Y_train_st = st.fit_resample(X_train,Y_train) #4、特征选择: #创建特征选择模型 sfm = SelectFromModel(LogisticRegression(penalty='l1',C=1.0,solver="liblinear")) #训练特征选择模型 sfm.fit(X_train,Y_train) #讲数据转换,剩下重要的特征 X_train_tiny = sfm.transform(X_train) X_test_tiny = sfm.transform(X_test) #5、创建模型 model = LogisticRegression(penalty='l1',C=1.0,solver="liblinear") model.fit(X_train_st_tiny,Y_train_st) #6、预测 y_pred = model.predict_proba(X_test_st_tiny) y_cate = model.predict(X_test_st_tiny) c=confusion_matrix(Y_test,y_cate) print(c) def report_auc(y_true,y_prob,title,out_name="",lw=2): fpr,tpr,_=roc_curve(y_true,y_prob,pos_label=1) print(fpr) print(tpr) plt.figure() plt.plot(fpr,tpr,color="darkorange",lw=lw,lable="ROC curve") plt.plot([0,1],[0,1],color="yellow",lw=lw,linestyle="--") plt.xlim([0,1]) plt.ylim([0,1.05]) plt.title(title) plt.legend(loc='lower right') plt.show(0) plt.savefig(r"d:\LR"+out_name,dpi=800) plt.close("all") report_auc(Y_test,y_pred[:,1],"Logistic with L1 panetly",'LG')

import pandas as pd import warnings import sklearn.datasets import sklearn.linear_model import matplotlib import matplotlib.font_manager as fm import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = pd.read_excel(r'C:\Users\Lenovo\Desktop\data.xlsx') print(data.info()) fig = plt.figure(figsize=(10, 8)) sns.heatmap(data.corr(), cmap="YlGnBu", annot=True) plt.title('相关性分析热力图') plt.rcParams['axes.unicode_minus'] = False plt.rcParams['font.sans-serif'] = 'SimHei' plt.show() y = data['y'] x = data.drop(['y'], axis=1) print('************************输出新的特征集数据***************************') print(x.head()) from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42) def relu(x): output=np.maximum(0, x) return output def relu_back_propagation(derror_wrt_output,x): derror_wrt_dinputs = np.array(derror_wrt_output, copy=True) derror_wrt_dinputs[x <= 0] = 0 return derror_wrt_dinputs def activated(activation_choose,x): if activation_choose == 'relu': return relu(x) def activated_back_propagation(activation_choose, derror_wrt_output, output): if activation_choose == 'relu': return relu_back_propagation(derror_wrt_output, output) class NeuralNetwork: def __init__(self, layers_strcuture, print_cost = False): self.layers_strcuture = layers_strcuture self.layers_num = len(layers_strcuture) self.param_layers_num = self.layers_num - 1 self.learning_rate = 0.0618 self.num_iterations = 2000 self.x = None self.y = None self.w = dict() self.b = dict() self.costs = [] self.print_cost = print_cost self.init_w_and_b() def set_learning_rate(self,learning_rate): self.learning_rate=learning_rate def set_num_iterations(self, num_iterations): self.num_iterations = num_iterations def set_xy(self, input, expected_output): self.x = input self.y = expected_output

import pandas as pd data = pd.read_csv(C:\Users\Administrator\Desktop\pythonsjwj\weibo_senti_100k.csv') data = data.dropna(); data.shape data.head() import jieba data['data_cut'] = data['review'].apply(lambda x: list(jieba.cut(x))) data.head() with open('stopword.txt','r',encoding = 'utf-8') as f: stop = f.readlines() import re stop = [re.sub(' |\n|\ufeff','',r) for r in stop] data['data_after'] = [[i for i in s if i not in stop] for s in data['data_cut']] data.head() w = [] for i in data['data_after']: w.extend(i) num_data = pd.DataFrame(pd.Series(w).value_counts()) num_data['id'] = list(range(1,len(num_data)+1)) a = lambda x:list(num_data['id'][x]) data['vec'] = data['data_after'].apply(a) data.head() from wordcloud import WordCloud import matplotlib.pyplot as plt num_words = [''.join(i) for i in data['data_after']] num_words = ''.join(num_words) num_words= re.sub(' ','',num_words) num = pd.Series(jieba.lcut(num_words)).value_counts() wc_pic = WordCloud(background_color='white',font_path=r'C:\Windows\Fonts\simhei.ttf').fit_words(num) plt.figure(figsize=(10,10)) plt.imshow(wc_pic) plt.axis('off') plt.show() from sklearn.model_selection import train_test_split from keras.preprocessing import sequence maxlen = 128 vec_data = list(sequence.pad_sequences(data['vec'],maxlen=maxlen)) x,xt,y,yt = train_test_split(vec_data,data['label'],test_size = 0.2,random_state = 123) import numpy as np x = np.array(list(x)) y = np.array(list(y)) xt = np.array(list(xt)) yt = np.array(list(yt)) x=x[:2000,:] y=y[:2000] xt=xt[:500,:] yt=yt[:500] from sklearn.svm import SVC clf = SVC(C=1, kernel = 'linear') clf.fit(x,y) from sklearn.metrics import classification_report test_pre = clf.predict(xt) report = classification_report(yt,test_pre) print(report) from keras.optimizers import SGD, RMSprop, Adagrad from keras.utils import np_utils from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.layers.embeddings import Embedding from keras.layers.recurrent import LSTM, GRU model = Sequential() model.add(Embedding(len(num_data['id'])+1,256)) model.add(Dense(32, activation='sigmoid', input_dim=100)) model.add(LSTM(128)) model.add(Dense(1)) model.add(Activation('sigmoid')) model.summary() import matplotlib.pyplot as plt import matplotlib.image as mpimg from keras.utils import plot_model plot_model(model,to_file='Lstm2.png',show_shapes=True) ls = mpimg.imread('Lstm2.png') plt.imshow(ls) plt.axis('off') plt.show() model.compile(loss='binary_crossentropy',optimizer='Adam',metrics=["accuracy"]) model.fit(x,y,validation_data=(x,y),epochs=15)

优化代码import numpy as np from PIL import Image from sklearn import svm from sklearn.model_selection import train_test_split import os import matplotlib.pyplot as plt # 定义图像文件夹路径和类别 cat_path = "cats/" dog_path = "dogs/" cat_label = 0 dog_label = 1 # 定义图像预处理函数 def preprocess_image(file_path): # 读取图像并转换为灰度图像 img = Image.open(file_path).convert('L') # 调整图像尺寸 img = img.resize((100, 100)) # 将图像转换为 Numpy 数组 img_array = np.array(img) # 将二维数组展平为一维数组 img_array = img_array.reshape(-1) return img_array # 读取猫和狗的图像并转换成 Numpy 数组 X = [] y = [] for file_name in os.listdir(cat_path): file_path = os.path.join(cat_path, file_name) img_array = preprocess_image(file_path) X.append(img_array) y.append(cat_label) for file_name in os.listdir(dog_path): file_path = os.path.join(dog_path, file_name) img_array = preprocess_image(file_path) X.append(img_array) y.append(dog_label) X = np.array(X) y = np.array(y) # 将数据集划分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) # 训练 SVM 分类器 clf = svm.SVC(kernel='linear') clf.fit(X_train, y_train) # 在测试集上进行预测 y_pred = clf.predict(X_test) # 计算测试集上的准确率 accuracy = np.mean(y_pred == y_test) print("Accuracy:", accuracy) # 显示测试集中的前 16 张图像和它们的预测结果 fig, axes = plt.subplots(nrows=4, ncols=4, figsize=(8, 8)) for i, ax in enumerate(axes.flat): # 显示图像 ax.imshow(X_test[i].reshape(100, 100), cmap='gray') # 显示预测结果和标签 if y_pred[i] == 0: ax.set_xlabel("Cat") else: ax.set_xlabel("Dog") ax.set_xticks([]) ax.set_yticks([]) plt.show()

下面的这段python代码,哪里有错误,修改一下:import numpy as np import matplotlib.pyplot as plt import pandas as pd import torch import torch.nn as nn from torch.autograd import Variable from sklearn.preprocessing import MinMaxScaler training_set = pd.read_csv('CX2-36_1971.csv') training_set = training_set.iloc[:, 1:2].values def sliding_windows(data, seq_length): x = [] y = [] for i in range(len(data) - seq_length): _x = data[i:(i + seq_length)] _y = data[i + seq_length] x.append(_x) y.append(_y) return np.array(x), np.array(y) sc = MinMaxScaler() training_data = sc.fit_transform(training_set) seq_length = 1 x, y = sliding_windows(training_data, seq_length) train_size = int(len(y) * 0.8) test_size = len(y) - train_size dataX = Variable(torch.Tensor(np.array(x))) dataY = Variable(torch.Tensor(np.array(y))) trainX = Variable(torch.Tensor(np.array(x[1:train_size]))) trainY = Variable(torch.Tensor(np.array(y[1:train_size]))) testX = Variable(torch.Tensor(np.array(x[train_size:len(x)]))) testY = Variable(torch.Tensor(np.array(y[train_size:len(y)]))) class LSTM(nn.Module): def __init__(self, num_classes, input_size, hidden_size, num_layers): super(LSTM, self).__init__() self.num_classes = num_classes self.num_layers = num_layers self.input_size = input_size self.hidden_size = hidden_size self.seq_length = seq_length self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): h_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) c_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) # Propagate input through LSTM ula, (h_out, _) = self.lstm(x, (h_0, c_0)) h_out = h_out.view(-1, self.hidden_size) out = self.fc(h_out) return out num_epochs = 2000 learning_rate = 0.001 input_size = 1 hidden_size = 2 num_layers = 1 num_classes = 1 lstm = LSTM(num_classes, input_size, hidden_size, num_layers) criterion = torch.nn.MSELoss() # mean-squared error for regression optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate) # optimizer = torch.optim.SGD(lstm.parameters(), lr=learning_rate) runn = 10 Y_predict = np.zeros((runn, len(dataY))) # Train the model for i in range(runn): print('Run: ' + str(i + 1)) for epoch in range(num_epochs): outputs = lstm(trainX) optimizer.zero_grad() # obtain the loss function loss = criterion(outputs, trainY) loss.backward() optimizer.step() if epoch % 100 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) lstm.eval() train_predict = lstm(dataX) data_predict = train_predict.data.numpy() dataY_plot = dataY.data.numpy() data_predict = sc.inverse_transform(data_predict) dataY_plot = sc.inverse_transform(dataY_plot) Y_predict[i,:] = np.transpose(np.array(data_predict)) Y_Predict = np.mean(np.array(Y_predict)) Y_Predict_T = np.transpose(np.array(Y_Predict))

最新推荐

recommend-type

grpcio-1.47.0-cp310-cp310-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

小程序项目源码-美容预约小程序.zip

小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序v
recommend-type

MobaXterm 工具

MobaXterm 工具
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不