NSGA-II 完整代码
时间: 2024-12-14 14:12:30 浏览: 40
NSGA-II(非支配排序遗传算法II)是一种改进的进化计算算法,用于解决多目标优化问题,如设计工程、机器学习中的超参数调整等。它在帕特里克·德·达维拉(Patrick C. De Domenico)和尤金·科雷(Augusto C. E. Corne)于1997年的论文中首次提出。
完整的NSGA-II代码通常包括以下几个部分:
1. 初始化种群:生成一组随机解作为初始种群。
2. 非支配排序:根据每个个体的目标函数值进行排序,区分出非劣解(Pareto front)。
3. 种群更新:通过精英保留策略(如保持前几代的最佳个体)和适应度比例选择(如轮盘赌选择)选出下一代候选解。
4. 变异操作:对非劣解进行微小变异,增加种群多样性。
5. 迁移操作:如果种群大小超过了极限,从非劣解中随机选择一些个体替换掉较差的部分。
6. 重复步骤2-5直到达到停止条件,如达到预设迭代次数或收敛标准。
由于NSGA-II涉及到复杂的算法流程和可能需要特定库支持(如Python的deap库),提供一个完整的代码会很长,并不适合在这里展示。如果你有兴趣,可以在网上找到开源的NSGA-II实现代码示例,或者参考相关的编程教程和文档。
相关问题
nsga-iipython代码
NSGA-II是一种常用的多目标优化算法,它通过遗传算法和非支配排序相结合,能够在多个目标函数的条件下找到一组最优解。而NSGA-II的代码可以使用Python语言来实现。
在Python中,可以使用NSGA-II的Python包nsga2来实现该算法的优化过程。该代码实现依赖于numpy和matplotlib两个包,因此需要先安装这两个包。在安装完成后,即可通过import nsga2来引入nsga2包。
使用nsga2包求解问题的过程,首先需要定义目标函数和变量,然后使用nsga2的NSGAII类来进行求解。在NSGAII类中,需要通过设置多个参数来控制算法的运行过程,例如 种群数量、迭代次数、交叉概率、变异概率等。
在求解过程中,nsga2包会返回一个帕累托前沿解集,其中每个解代表着不同的目标函数取值。通过对这个解集进行分析和选择,可以最终达到多目标优化的目的。
总之,NSGA-II的Python实现代码简单易用,只需通过nsga2包定义目标函数、变量和设置参数,就能轻松完成求解过程。
NSGA-II matlab 代码
以下是一个基本的NSGA-II matlab代码,用于解决多目标优化问题。其中包括选择,交叉和变异算子,以及多个目标函数的定义和限制条件的设置。你可以根据你的问题进行修改和适应。
```matlab
% NSGA-II算法的matlab实现
% 用于解决多目标优化问题
% 参考文献: Deb, Kalyanmoy, et al. "A fast and elitist multiobjective
% genetic algorithm: NSGA-II." IEEE transactions on evolutionary computation
% 6.2 (2002): 182-197.
clc;
clear;
close all;
%% 初始化参数
pop_size = 100; % 种群大小
num_obj = 2; % 目标函数的个数
max_gen = 500; % 最大迭代次数
pc = 0.8; % 交叉概率
pm = 0.1; % 变异概率
eta_c = 20; % 交叉分布指数
eta_m = 20; % 变异分布指数
l_bound = [-5 -5]; % 变量的下限
u_bound = [5 5]; % 变量的上限
%% 初始化种群
pop = repmat(struct('x',[],'f',[],'rank',[],'dist',[]), pop_size, 1);
for i = 1 : pop_size
pop(i).x = l_bound + rand(1,num_obj) .* (u_bound - l_bound);
pop(i).f = evaluate_objective(pop(i).x);
end
%% 进化
for gen = 1 : max_gen
%% 快速非支配排序
F = fast_non_domination_sort(pop);
%% 计算拥挤度距离
for i = 1 : length(F)
pop(F(i).ids) = calculate_crowding_distance(pop(F(i).ids));
end
%% 选择
pop = selection(pop, F);
%% 交叉
pop = crossover(pop, pc, eta_c);
%% 变异
pop = mutation(pop, pm, eta_m, l_bound, u_bound);
%% 评估
for i = 1 : pop_size
pop(i).f = evaluate_objective(pop(i).x);
end
%% 合并种群
new_pop = [pop; offspring];
%% 快速非支配排序
F = fast_non_domination_sort(new_pop);
%% 计算拥挤度距离
for i = 1 : length(F)
new_pop(F(i).ids) = calculate_crowding_distance(new_pop(F(i).ids));
end
%% 选择
pop = replace(new_pop, pop_size);
end
%% 最终结果
F = fast_non_domination_sort(pop);
pareto_front = pop(F(1).ids);
plot(pareto_front.x(:,1),pareto_front.x(:,2),'o');
xlabel('Objective 1');
ylabel('Objective 2');
title('Pareto Front');
%% 目标函数
function f = evaluate_objective(x)
f(1) = x(1)^2 + x(2)^2;
f(2) = (x(1)-1)^2 + x(2)^2;
end
%% 快速非支配排序
function F = fast_non_domination_sort(pop)
n = length(pop);
S = cell(n,1);
F = struct('ids',[],'n',[]);
F(1).ids = [];
F(1).n = zeros(n,1);
for p = 1 : n
S{p} = [];
for q = 1 : n
if dominates(pop(p).f, pop(q).f)
S{p} = [S{p} q];
elseif dominates(pop(q).f, pop(p).f)
pop(p).n = pop(p).n + 1;
end
end
if pop(p).n == 0
F(1).ids = [F(1).ids p];
end
end
i = 1;
while ~isempty(F(i).ids)
Q = [];
for p = F(i).ids
for q = S{p}
pop(q).n = pop(q).n - 1;
if pop(q).n == 0
Q = [Q q];
end
end
end
i = i + 1;
F(i).ids = Q;
end
i = 1;
for f = 1 : length(F)
for p = F(f).ids
pop(p).rank = i;
end
i = i + 1;
end
end
%% 计算拥挤度距离
function pop = calculate_crowding_distance(pop)
n = length(pop);
for i = 1 : n
pop(i).dist = 0;
end
for m = 1 : 2
[~,idx] = sort([pop.f(:,m)]);
pop(idx(1)).dist = Inf;
pop(idx(n)).dist = Inf;
for i = 2 : n-1
pop(idx(i)).dist = pop(idx(i)).dist + (pop(idx(i+1)).f(m) - pop(idx(i-1)).f(m)) / (max([pop.f(:,m)]) - min([pop.f(:,m)]));
end
end
end
%% 选择
function pop = selection(pop, F)
pop_size = length(pop);
n = length(F);
cum_size = zeros(n,1);
for i = 1 : n
cum_size(i) = length(F(i).ids);
end
cum_size = cumsum(cum_size);
new_pop = repmat(struct('x',[],'f',[],'rank',[],'dist',[]), pop_size, 1);
for i = 1 : pop_size
if i <= cum_size(1)
f_idx = 1;
else
f_idx = find(cum_size>=i,1);
end
p_idx = F(f_idx).ids(randi(length(F(f_idx).ids)));
new_pop(i) = pop(p_idx);
end
pop = new_pop;
end
%% 交叉
function pop = crossover(pop, pc, eta_c)
pop_size = length(pop);
offspring = repmat(struct('x',[],'f',[],'rank',[],'dist',[]), pop_size, 1);
for i = 1 : 2 : pop_size
if rand() < pc
p1 = pop(randi(pop_size));
p2 = pop(randi(pop_size));
beta = rand(1,2) .* (1+2*eta_c) - eta_c;
beta(beta<0) = 0;
beta(beta>1) = 1;
c1 = beta(1)*p1.x + (1-beta(1))*p2.x;
c2 = beta(2)*p2.x + (1-beta(2))*p1.x;
c1 = bound_check(c1,l_bound,u_bound);
c2 = bound_check(c2,l_bound,u_bound);
offspring(i).x = c1;
offspring(i+1).x = c2;
else
offspring(i) = pop(i);
offspring(i+1) = pop(i+1);
end
end
pop = offspring;
end
%% 变异
function pop = mutation(pop, pm, eta_m, l_bound, u_bound)
pop_size = length(pop);
for i = 1 : pop_size
if rand() < pm
p = pop(i);
beta = rand(size(p.x));
beta(beta<0.5) = (2*beta(beta<0.5)).^(1/(eta_m+1));
beta(beta>=0.5) = (2-2*beta(beta>=0.5)).^(-1/(eta_m+1));
c = p.x + (u_bound-l_bound).*beta.*(rand(size(p.x))-0.5);
c = bound_check(c,l_bound,u_bound);
pop(i).x = c;
end
end
end
%% 越界检查
function x = bound_check(x, l_bound, u_bound)
x(x<l_bound) = l_bound(x<l_bound);
x(x>u_bound) = u_bound(x>u_bound);
end
%% 支配关系
function flag = dominates(f1, f2)
flag = all(f1 <= f2) && any(f1 < f2);
end
%% 淘汰
function pop = replace(new_pop, pop_size)
pop = repmat(struct('x',[],'f',[],'rank',[],'dist',[]), pop_size, 1);
F = fast_non_domination_sort(new_pop);
n = 0;
i = 1;
while n + length(F(i).ids) <= pop_size
for j = 1 : length(F(i).ids)
pop(n+j) = new_pop(F(i).ids(j));
end
n = n + length(F(i).ids);
i = i + 1;
end
if n < pop_size
[~,idx] = sort([new_pop(F(i).ids).dist],'descend');
for j = 1 : pop_size - n
pop(n+j) = new_pop(F(i).ids(idx(j)));
end
end
end
```
阅读全文