kmeans伪代码matlab
时间: 2024-09-11 16:05:57 浏览: 55
K-means算法是一种常用的无监督聚类方法,其基本步骤可以用以下简单的Matlab伪代码表示:
```matlab
% 初始化
k = number_of_clusters; % 聚类数目
randomCentroids = generateRandomCentroids(data, k); % 随机选择初始质心
while notConverged % 循环直到收敛
% 分配每个数据点到最近的质心
assignments = zeros(size(data, 1), 1);
for i = 1:size(data, 1)
distances = pdist2(data(i,:), randomCentroids); % 计算距离
assignments(i) = min(distances); % 最近质心索引
end
% 更新质心
newCentroids = zeros(k, size(data, 2));
for j = 1:k
clusterData = data(assignment == j, :); % 获取当前簇的数据
newCentroids(j, :) = mean(clusterData, 'all'); % 新质心为簇内所有点均值
end
% 检查是否收敛,通常看两个迭代周期内质心变化是否小于某个阈值
if max(norm(randomCentroids - newCentroids)) < tolerance
break;
end
randomCentroids = newCentroids; % 更新质心
end
```
在这个伪代码中,`data`是输入的数据集,`generateRandomCentroids`是一个函数用于随机生成初始质心,`pdist2`计算两点之间的欧式距离矩阵,`notConverged`是一个标志判断是否达到停止条件(通常是质心移动的差异小于预设的容忍度),`assignment`记录每个数据点所属的簇。
阅读全文