dde.grad.jacobian
时间: 2023-09-24 11:12:40 浏览: 249
dde.grad.jacobian 是一个函数,用于计算带有延迟微分方程(DDE)的梯度雅可比矩阵。DDE是一种微分方程,其导数依赖于之前的时间点上的函数值。梯度雅可比矩阵是对函数中所有变量的偏导数的矩阵。通过计算梯度雅可比矩阵,可以得到关于函数变量的导数信息。
该函数的具体用法可能会根据使用的编程语言和库而有所不同,请提供更多上下文信息或者说明你使用的具体环境,以便我能够更好地回答你的问题。
相关问题
"""Backend supported: tensorflow.compat.v1, tensorflow, pytorch, paddle""" import deepxde as dde def pde(x, y): dy_r = dde.grad.jacobian(y, x, i=0, j=0) return dy_r + x[:, 0:1] def solution(X): r, x = X[:, 0:1], X[:, 1:] return 4 - r ** 2 def boundary(x, on_boundary): return on_boundary geom = dde.geometry.Rectangle(xmin=[-2, 0], xmax=[2, 20]) bc = dde.DirichletBC(geom, solution, boundary) data = dde.data.PDE(geom, pde, bc, 1600, 200, solution=solution, num_test=1000) net = dde.maps.FNN([2] + [20] * 3 + [1], "tanh", "Glorot normal") model = dde.Model(data, net) model.compile("adam", lr=0.01, metrics=["l2 relative error"]) losshistory, train_state = model.train(epochs=1500) dde.saveplot(losshistory, train_state, issave=True, isplot=True)
这段代码是用于求解一个二维偏微分方程的。其中,使用了深度学习库deepxde来实现求解过程。具体来说,这个方程是一个二阶常微分方程,可以使用dde.grad.jacobian函数求取其导数。模型使用了一个三层的前馈神经网络,并使用adam优化算法进行训练。最终的训练结果保存在losshistory和train_state中,并可通过dde.saveplot函数进行可视化。
请对以下代码进行更改,使其可以输出流场图"""Backend supported: tensorflow.compat.v1, tensorflow, pytorch, paddle""" import deepxde as dde def pde(x, y): dy_r = dde.grad.jacobian(y, x, i=0, j=0) return dy_r + x[:, 0:1] def solution(X): r, x = X[:, 0:1], X[:, 1:] return 4 - r ** 2 def boundary(x, on_boundary): return on_boundary geom = dde.geometry.Rectangle(xmin=[-2, 0], xmax=[2, 20]) bc = dde.DirichletBC(geom, solution, boundary) data = dde.data.PDE(geom, pde, bc, 1600, 200, solution=solution, num_test=1000) net = dde.maps.FNN([2] + [20] * 3 + [1], "tanh", "Glorot normal") model = dde.Model(data, net) model.compile("adam", lr=0.01, metrics=["l2 relative error"]) losshistory, train_state = model.train(epochs=1500) dde.saveplot(losshistory, train_state, issave=True, isplot=True)
为了输出流场图,我们需要修改代码如下:
```
import numpy as np
import matplotlib.pyplot as plt
# 计算解析解
def exact_solution(x):
r, x = x[:, 0:1], x[:, 1:]
return 2 * (1 - np.exp(-r**2 / 4)) - x**2 / 2
# 生成网格
X, Y = np.meshgrid(np.linspace(-2, 2, 100), np.linspace(0, 20, 100))
XY = np.hstack((X.flatten()[:, None], Y.flatten()[:, None]))
# 计算模型预测值
prediction = model.predict(XY)
Z = prediction.reshape(100, 100)
# 绘制流场图
plt.figure()
plt.contourf(X, Y, Z, levels=20, cmap=plt.cm.jet)
plt.colorbar()
plt.xlabel("x")
plt.ylabel("y")
plt.title("Flow field")
plt.show()
```
我们首先定义了一个exact_solution函数,用于计算解析解。然后创建一个100x100的网格,并使用model.predict函数计算模型的预测值,最终通过plt.contourf函数绘制流场图。
阅读全文