32个特征的csv文件利用mse进行降维的python代码
时间: 2024-04-14 09:26:16 浏览: 158
你可以使用sklearn库中的PCA(主成分分析)算法来进行降维。下面是一个示例代码:
```python
import pandas as pd
from sklearn.decomposition import PCA
# 读取CSV文件
data = pd.read_csv('data.csv')
# 提取特征列
features = data.iloc[:, 1:] # 假设特征列从第2列开始
# 使用PCA进行降维
pca = PCA(n_components=2) # 设置要降维到的维度
reduced_features = pca.fit_transform(features)
# 打印降维后的特征
print(reduced_features)
```
在上面的代码中,你需要将 `data.csv` 替换为你的实际数据文件名,并根据实际情况调整特征列的提取方式。`n_components` 参数用于指定要降低到的维度,这里设置为2。你可以根据需要调整这个值。
此代码将使用MSE(均方误差)作为损失函数来进行主成分分析(PCA)降维,并将结果打印出来。
相关问题
请帮我完成100行左右的python代码,要求基于多元线性回归学习模型,输入是20个变量,输出是两个变量,你也可以做一下特征降维或者模型比较和可视化
好的,下面是一个基于多元线性回归的示例代码:
```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score, mean_squared_error
# 读取数据
data = pd.read_csv('data.csv')
# 特征选择
X = data.iloc[:, :-2].values
y = data.iloc[:, -2:].values
# 特征标准化
from sklearn.preprocessing import StandardScaler
X = StandardScaler().fit_transform(X)
# 特征降维
from sklearn.decomposition import PCA
pca = PCA(n_components=10)
X = pca.fit_transform(X)
# 训练集和测试集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 模型训练
regressor = LinearRegression()
regressor.fit(X_train, y_train)
# 模型预测
y_pred = regressor.predict(X_test)
# 模型评估
print('R2 score:', r2_score(y_test, y_pred))
print('MSE:', mean_squared_error(y_test, y_pred))
# 模型可视化
plt.scatter(y_test[:, 0], y_pred[:, 0])
plt.plot([0, 1], [0, 1], '--k', transform=plt.gca().transAxes)
plt.xlabel('True values')
plt.ylabel('Predictions')
plt.title('Multiple Linear Regression')
plt.show()
```
这段代码的主要流程如下:
1. 导入必要的库:pandas 用于数据处理,numpy 用于数学计算,matplotlib 用于数据可视化,sklearn 中的相关模块用于机器学习。
2. 读取数据:从 csv 文件中读取数据。
3. 特征选择:将数据集分为特征和目标,其中特征是前 20 个变量,目标是后 2 个变量。
4. 特征标准化:将特征进行标准化处理,使其均值为 0,方差为 1。
5. 特征降维:使用 PCA 算法将高维特征降为 10 维。
6. 训练集和测试集划分:将数据集划分为训练集和测试集,其中测试集占总数据集的 20%。
7. 模型训练:使用 sklearn 中的 LinearRegression 模型进行训练。
8. 模型预测:使用训练好的模型进行预测。
9. 模型评估:计算 R2 score 和 MSE 两个指标来评估模型的性能。
10. 模型可视化:将测试集的真实值和预测值进行可视化,以观察模型的预测效果。
当然,这只是一个基础的代码示例,如果需要更加精细化的模型调参和特征工程,还需要根据具体问题进行修改。
cnn-bls时间序列预测python代码
好的,这里给您提供一个基于Python的CNN-BLS时间序列预测的示例代码,供参考:
首先,我们需要导入必要的库:
``` python
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv1D, MaxPooling1D
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from BLS import BLS
```
接下来,我们可以定义一个函数用于读取并预处理时间序列数据,以便进行模型训练和预测:
``` python
def load_data(filename, look_back):
# 读取数据文件
raw_data = np.loadtxt(filename, delimiter=',')
# 数据归一化处理
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(raw_data.reshape(-1, 1))
# 构造输入和输出序列
X = []
Y = []
for i in range(len(scaled_data) - look_back):
X.append(scaled_data[i:i+look_back, 0])
Y.append(scaled_data[i+look_back, 0])
X = np.array(X)
Y = np.array(Y)
# 将数据集分为训练集和测试集
train_size = int(len(X) * 0.7)
X_train, X_test = X[:train_size], X[train_size:]
Y_train, Y_test = Y[:train_size], Y[train_size:]
return X_train, Y_train, X_test, Y_test, scaler
```
然后,我们可以使用卷积神经网络对时间序列数据进行特征提取:
``` python
def create_cnn_model(look_back):
model = Sequential()
model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(look_back, 1)))
model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Conv1D(filters=128, kernel_size=3, activation='relu'))
model.add(Conv1D(filters=128, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Conv1D(filters=256, kernel_size=3, activation='relu'))
model.add(Conv1D(filters=256, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
return model
```
接着,我们可以使用基于学习的稳健回归算法对特征向量进行降维处理:
``` python
def bls_feature(X_train, Y_train, X_test, Y_test, hidden_neurons, sparsity):
# 构造BLS模型
bls = BLS(hidden_neurons, sparsity)
# 训练BLS模型
bls.fit(X_train, Y_train, X_test, Y_test)
# 使用BLS模型进行特征提取
X_train_features = bls.predict(X_train)
X_test_features = bls.predict(X_test)
return X_train_features, X_test_features
```
最后,我们可以使用线性回归模型对降维后的特征向量进行建模,以预测时间序列数据的未来趋势:
``` python
def train_and_predict(X_train_features, Y_train, X_test_features, Y_test):
# 构造线性回归模型
model = Sequential()
model.add(Dense(1, input_dim=X_train_features.shape[1], activation='linear'))
model.compile(loss='mean_squared_error', optimizer='adam')
# 训练线性回归模型
model.fit(X_train_features, Y_train, epochs=100, batch_size=64, verbose=0)
# 使用线性回归模型进行预测
Y_train_pred = model.predict(X_train_features)
Y_test_pred = model.predict(X_test_features)
# 计算预测误差
train_rmse = np.sqrt(mean_squared_error(Y_train, Y_train_pred))
test_rmse = np.sqrt(mean_squared_error(Y_test, Y_test_pred))
print('Train RMSE: %.3f' % train_rmse)
print('Test RMSE: %.3f' % test_rmse)
```
完整代码如下所示:
``` python
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv1D, MaxPooling1D
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from BLS import BLS
def load_data(filename, look_back):
# 读取数据文件
raw_data = np.loadtxt(filename, delimiter=',')
# 数据归一化处理
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(raw_data.reshape(-1, 1))
# 构造输入和输出序列
X = []
Y = []
for i in range(len(scaled_data) - look_back):
X.append(scaled_data[i:i+look_back, 0])
Y.append(scaled_data[i+look_back, 0])
X = np.array(X)
Y = np.array(Y)
# 将数据集分为训练集和测试集
train_size = int(len(X) * 0.7)
X_train, X_test = X[:train_size], X[train_size:]
Y_train, Y_test = Y[:train_size], Y[train_size:]
return X_train, Y_train, X_test, Y_test, scaler
def create_cnn_model(look_back):
model = Sequential()
model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(look_back, 1)))
model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Conv1D(filters=128, kernel_size=3, activation='relu'))
model.add(Conv1D(filters=128, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Conv1D(filters=256, kernel_size=3, activation='relu'))
model.add(Conv1D(filters=256, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
return model
def bls_feature(X_train, Y_train, X_test, Y_test, hidden_neurons, sparsity):
# 构造BLS模型
bls = BLS(hidden_neurons, sparsity)
# 训练BLS模型
bls.fit(X_train, Y_train, X_test, Y_test)
# 使用BLS模型进行特征提取
X_train_features = bls.predict(X_train)
X_test_features = bls.predict(X_test)
return X_train_features, X_test_features
def train_and_predict(X_train_features, Y_train, X_test_features, Y_test):
# 构造线性回归模型
model = Sequential()
model.add(Dense(1, input_dim=X_train_features.shape[1], activation='linear'))
model.compile(loss='mean_squared_error', optimizer='adam')
# 训练线性回归模型
model.fit(X_train_features, Y_train, epochs=100, batch_size=64, verbose=0)
# 使用线性回归模型进行预测
Y_train_pred = model.predict(X_train_features)
Y_test_pred = model.predict(X_test_features)
# 计算预测误差
train_rmse = np.sqrt(mean_squared_error(Y_train, Y_train_pred))
test_rmse = np.sqrt(mean_squared_error(Y_test, Y_test_pred))
print('Train RMSE: %.3f' % train_rmse)
print('Test RMSE: %.3f' % test_rmse)
# 加载数据
X_train, Y_train, X_test, Y_test, scaler = load_data('data.csv', look_back=60)
# 特征提取
hidden_neurons = 100
sparsity = 0.8
X_train_features, X_test_features = bls_feature(X_train, Y_train, X_test, Y_test, hidden_neurons, sparsity)
# 建模和预测
model = create_cnn_model(look_back=60)
model.summary()
model.compile(loss='mse', optimizer='adam')
model.fit(X_train.reshape(-1, 60, 1), Y_train, epochs=100, batch_size=64, verbose=0)
Y_train_pred = model.predict(X_train.reshape(-1, 60, 1))
Y_test_pred = model.predict(X_test.reshape(-1, 60, 1))
train_rmse = np.sqrt(mean_squared_error(Y_train, Y_train_pred))
test_rmse = np.sqrt(mean_squared_error(Y_test, Y_test_pred))
print('Train RMSE: %.3f' % train_rmse)
print('Test RMSE: %.3f' % test_rmse)
train_and_predict(X_train_features, Y_train, X_test_features, Y_test)
```
需要注意的是,上述代码中使用了一个名为“BLS”的自定义模块,用于实现基于学习的稳健回归算法。如果您还没有这个模块,请先下载并安装。
阅读全文