yolov7轻量化检测算法
时间: 2023-09-26 16:14:34 浏览: 118
根据引用,轻量化的YOLOv5算法可以通过与Ghost模块结合来降低网络的参数量,并加快原始网络的推理速度。Ghost模块是一种新的模块,通过廉价的操作生成更多的特征映射,揭示了内在特征背后的信息。Ghost bottlenecks是由Ghost模块堆叠而成的,可以轻松构建轻量级的GhostNet。
根据引用,Ghost模块的代码可以通过以下方式实现:
```python
class GhostModule(nn.Module):
def __init__(self, inp, oup, kernel_size=1, ratio=2, dw_size=3, stride=1, relu=True):
super(GhostModule, self).__init__()
self.oup = oup
init_channels = math.ceil(oup / ratio)
new_channels = init_channels*(ratio-1)
self.primary_conv = nn.Sequential(
nn.Conv2d(inp, init_channels, kernel_size, stride, kernel_size//2, bias=False),
nn.BatchNorm2d(init_channels),
nn.ReLU(inplace=True) if relu else nn.Sequential(),
)
self.cheap_operation = nn.Sequential(
nn.Conv2d(init_channels, new_channels, dw_size, 1, dw_size//2, groups=init_channels, bias=False),
nn.BatchNorm2d(new_channels),
nn.ReLU(inplace=True) if relu else nn.Sequential(),
)
def forward(self, x):
x1 = self.primary_conv(x)
x2 = self.cheap_operation(x1)
out = torch.cat([x1,x2], dim=1)
return out[:,:self.oup,:,:]
```
综上所述,YOLOv7轻量化检测算法可以通过结合Ghost模块来实现轻量化,提高推理速度。但是,YOLOv7这个版本的轻量化检测算法在提供的引用内容中并没有涉及到。<span class="em">1</span><span class="em">2</span><span class="em">3</span><span class="em">4</span>
阅读全文