模拟退火算法解决tsp问题
时间: 2024-01-05 15:18:56 浏览: 98
模拟退火算法解决tsp问题.zip_route network_最优算法_模拟退火_路线设计
模拟退火算法可以用来解决旅行商问题(TSP)。以下是使用模拟退火算法解决TSP问题的步骤:
1.定义目标函数:TSP问题的目标函数是要找到一条路径,使得路径的总长度最小。
2.初始化:随机生成一条路径,并计算其总长度。
3.循环迭代:在每次迭代中,随机生成一条新路径,并计算其总长度。如果新路径的总长度比当前路径短,则接受新路径。否则,以一定的概率接受新路径。这个概率是根据Metropolis准则计算的,公式为:P = exp(-ΔE/T),其中ΔE是新路径长度和当前路径长度的差,T是当前温度。温度会随着迭代次数的增加而逐渐降低。
4.输出结果:当温度降低到一定程度时,算法停止迭代,并输出最优路径和其总长度。
以下是使用Python实现模拟退火算法解决TSP问题的代码:
```python
import random
import math
# 计算两个城市之间的距离
def distance(city1, city2):
return math.sqrt((city1[0] - city2[0]) ** 2 + (city1[1] - city2[1]) ** 2)
# 计算路径长度
def path_length(path, cities):
length = 0
for i in range(len(path) - 1):
length += distance(cities[path[i]], cities[path[i+1]])
length += distance(cities[path[-1]], cities[path[0]])
return length
# 模拟退火算法
def simulated_annealing(cities, T=10000, alpha=0.99, stopping_T=1e-8, stopping_iter=1000):
# 初始化
path = list(range(len(cities)))
random.shuffle(path)
current_length = path_length(path, cities)
best_path = path
best_length = current_length
i = 0
# 迭代
while T >= stopping_T and i < stopping_iter:
# 生成新路径
new_path = list(path)
index1 = random.randint(0, len(path) - 1)
index2 = random.randint(0, len(path) - 1)
new_path[index1], new_path[index2] = new_path[index2], new_path[index1]
new_length = path_length(new_path, cities)
# 判断是否接受新路径
if new_length < current_length:
path = new_path
current_length = new_length
if current_length < best_length:
best_path = path
best_length = current_length
else:
delta = new_length - current_length
T *= alpha
if random.random() < math.exp(-delta / T):
path = new_path
current_length = new_length
i += 1
return best_path, best_length
# 测试
cities = [(60, 200), (180, 200), (80, 180), (140, 180), (20, 160), (100, 160), (200, 160), (140, 140), (40, 120), (100, 120), (180, 100), (60, 80), (120, 80), (180, 60), (20, 40), (100, 40), (200, 40), (20, 20), (60, 20), (160, 20)]
best_path, best_length = simulated_annealing(cities)
print("Best path:", best_path)
print("Best length:", best_length)
```
阅读全文