pyspark编写逻辑回归
时间: 2024-12-12 21:07:56 浏览: 16
在PySpark中,逻辑回归通常用于分类任务,它利用概率模型来进行预测。以下是使用Apache Spark MLlib库进行逻辑回归的基本步骤:
1. **导入所需库**:
```python
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.feature import VectorAssembler
from pyspark.sql import SparkSession
```
2. **创建SparkSession**:
```python
spark = SparkSession.builder.appName("Logistic Regression").getOrCreate()
```
3. **加载数据**:
假设你有一个包含特征数据的DataFrame `data` 和一个标签列 `label_column`:
```python
assembler = VectorAssembler(inputCols=data.columns[:-1], outputCol="features")
assembled_data = assembler.transform(data)
```
4. **划分数据集**:
```python
train_data, test_data = assembled_data.randomSplit([0.7, 0.3], seed=42)
```
5. **创建并训练模型**:
```python
lr = LogisticRegression(featuresCol="features", labelCol="label_column")
lr_model = lr.fit(train_data)
```
6. **评估模型**:
```python
predictions = lr_model.transform(test_data)
eval_results = predictions.select("prediction", "label_column").groupBy("prediction").count()
print(eval_results.show())
```
7. **保存模型**:
```python
lr_model.write.save("/path/to/model")
```
阅读全文