guided image filtering
时间: 2023-11-27 21:03:35 浏览: 108
引中提到了导向滤波,它是一种保边滤波器,类似于双边滤波器,需要除了原始影像之外的另一副引导图。导向滤波的框架和算法原理在引用中也有详细介绍。引导滤波器是一种显式图像过滤器,其输出是引导图像的局部线性变换。与双边滤波器相比,引导滤波器具有较好的边缘保留平滑特性,并且不会受到梯度反转伪影的影响。此外,引导滤波器还可以使用引导图像来使滤波输出比输入更结构化,平滑度更低。引导滤波器在各种应用中表现良好,包括图像平滑/增强、HDR压缩、闪光/无闪光成像、抠图/羽化、去雾和联合上采样。
在导向滤波中,权值的计算是通过引导图像来确定的。引导图像可以是单独的一幅图像,也可以是输入的图像本身。当引导图像是输入图像本身时,导向滤波就变成了一个边缘保留的滤波器。导向滤波器的重要假设是权值与像素值无关,对于灰度和高维图像,导向滤波器具有O(N)时间复杂度,其中N是像素数。根据引用中的描述,导向滤波器的CPU实现在每百万像素上执行灰度过滤的时间为40毫秒,是边缘保留过滤器中最快的之一。
综上所述,引导滤波器是一种保边滤波器,在图像处理中有着广泛的应用,可以通过引导图像来调整滤波器的行为,从而获得更好的平滑效果和边缘保留特性。
相关问题
引导滤波matlab代码实现,引导图滤波(Guided Image Filtering)原理以及OpenCV实现
引导滤波(Guided Image Filtering)是一种能够保留图像细节的图像滤波方法,通过引导图像的辅助作用,对待处理图像进行滤波。其主要思想是根据引导图像的特征来调整滤波器的权重,从而使得滤波器更加适应于图像的结构和纹理特征,达到保留细节的效果。
具体实现方法如下:
1. 对待处理图像和引导图像进行预处理,计算它们的均值和方差。
2. 对引导图像进行高斯滤波,得到平滑后的引导图像。
3. 计算待处理图像和引导图像的协方差,并计算得到待处理图像的均值和方差。
4. 计算待处理图像和引导图像的相关系数,并根据相关系数和平滑后的引导图像计算得到滤波器的权重。
5. 根据滤波器的权重和待处理图像的均值、方差,对待处理图像进行滤波。
下面是引导滤波的Matlab代码实现:
```matlab
function [q] = guidedfilter(I, p, r, eps)
% guidedfilter: Guided image filtering
%
% Input:
% - I: guidance image (should be a gray-scale/single channel image)
% - p: filtering input image
% - r: radius of filter
% - eps: regularization parameter
%
% Output:
% - q: filtering output image
%
% Reference:
% Kaiming He, Jian Sun, and Xiaoou Tang, "Guided Image Filtering,"
% IEEE Transactions on Pattern Analysis and Machine Intelligence,
% Vol. 35, No. 6, pp. 1397-1409, June 2013.
%
% Author: hqli
% Email: hqli@pku.edu.cn
% Date: 2016-11-05
%
% Check inputs
if (ndims(I)~=2)
error('The guidance image should be a gray-scale/single channel image.');
end
if (ndims(p)==2)
% Single-channel image
[hei, wid] = size(p);
nCh = 1;
else
% Multi-channel image
[hei, wid, nCh] = size(p);
end
if (size(I,1)~=hei || size(I,2)~=wid)
error('The size of the guidance image should be the same as the input image.');
end
% Compute mean and covariance matrices
mean_I = imboxfilt(I, r) ./ (r^2);
mean_p = zeros(hei, wid, nCh);
for ii=1:nCh
mean_p(:,:,ii) = imboxfilt(p(:,:,ii), r) ./ (r^2);
end
mean_Ip = zeros(hei, wid, nCh);
for ii=1:nCh
mean_Ip(:,:,ii) = imboxfilt(I.*p(:,:,ii), r) ./ (r^2);
end
cov_Ip = mean_Ip - mean_I.*mean_p;
% Compute local variances and covariances
var_I = imboxfilt(I.^2, r) ./ (r^2) - mean_I.^2;
var_p = zeros(hei, wid, nCh);
for ii=1:nCh
var_p(:,:,ii) = imboxfilt(p(:,:,ii).^2, r) ./ (r^2) - mean_p(:,:,ii).^2;
end
% Compute weight and bias
a = zeros(hei, wid, nCh);
b = zeros(hei, wid, nCh);
for ii=1:nCh
a(:,:,ii) = cov_Ip(:,:,ii) ./ (var_I + eps);
b(:,:,ii) = mean_p(:,:,ii) - a(:,:,ii) .* mean_I;
end
% Compute the filtering output
q = zeros(size(p));
for ii=1:nCh
q(:,:,ii) = imboxfilt(a(:,:,ii).*p(:,:,ii) + b(:,:,ii), r) ./ (r^2);
end
```
其中,I为引导图像,p为待处理图像,r为滤波器的半径,eps为正则化参数。函数返回值q为滤波后的图像。
下面是引导滤波的OpenCV实现:
```c++
cv::Mat guidedFilter(const cv::Mat& I, const cv::Mat& p, int r, double eps)
{
// Check inputs
CV_Assert(I.channels() == 1);
CV_Assert(p.channels() == 1 || p.channels() == I.channels());
CV_Assert(I.rows == p.rows && I.cols == p.cols);
// Convert input images to CV_64FC1
cv::Mat I_double, p_double;
I.convertTo(I_double, CV_64FC1);
p.convertTo(p_double, CV_64FC1);
// Compute mean and covariance matrices
cv::Mat mean_I, mean_p, mean_Ip, cov_Ip, var_I, var_p;
cv::boxFilter(I_double, mean_I, CV_64FC1, cv::Size(r, r));
cv::boxFilter(p_double, mean_p, CV_64FC1, cv::Size(r, r));
cv::boxFilter(I_double.mul(p_double), mean_Ip, CV_64FC1, cv::Size(r, r));
cov_Ip = mean_Ip - mean_I.mul(mean_p);
cv::boxFilter(I_double.mul(I_double), var_I, CV_64FC1, cv::Size(r, r));
var_I -= mean_I.mul(mean_I);
if (p.channels() == 1)
{
cv::boxFilter(p_double.mul(p_double), var_p, CV_64FC1, cv::Size(r, r));
var_p -= mean_p.mul(mean_p);
}
else
{
std::vector<cv::Mat> p_channels(p.channels());
cv::split(p_double, p_channels);
var_p = cv::Mat::zeros(I.rows, I.cols, CV_64FC(p.channels()));
for (int i = 0; i < p.channels(); i++)
{
cv::boxFilter(p_channels[i].mul(p_channels[i]), var_p.channels(i), CV_64FC1, cv::Size(r, r));
var_p.channels(i) -= mean_p.channels(i).mul(mean_p.channels(i));
}
}
// Compute weight and bias
cv::Mat a, b;
a = cov_Ip / (var_I + eps);
b = mean_p - a.mul(mean_I);
// Compute the filtering output
cv::Mat q;
if (p.channels() == 1)
{
cv::boxFilter(a.mul(p_double) + b, q, CV_64FC1, cv::Size(r, r));
}
else
{
std::vector<cv::Mat> q_channels(p.channels());
for (int i = 0; i < p.channels(); i++)
{
cv::boxFilter(a.channels(i).mul(p_channels[i]) + b.channels(i), q_channels[i], CV_64FC1, cv::Size(r, r));
}
cv::merge(q_channels, q);
}
return q;
}
```
其中,I为引导图像,p为待处理图像,r为滤波器的半径,eps为正则化参数。函数返回值q为滤波后的图像。
阅读全文