构思:基于HOG(方向梯度直方图)提取结合FreeMatch(自适应阈值法)增强+DNL-means(深度非局部均值)改进MSR降噪的图像增强算法,增强跟降噪并行。根据上述构思用python实现上述模型
时间: 2024-10-25 14:07:28 浏览: 104
基于HOG(方向梯度直方图)、FreeMatch自适应阈值、DNL-means深度非局部均值的图像增强和降噪算法,首先需要了解这些技术的基本原理:
1. HOG(Histogram of Oriented Gradients)是一种特征描述符,用于检测图像中的边缘和角点,特别适合行人检测等任务。
2. FreeMatch利用自适应阈值处理来分割前景和背景,有助于提高图像对比度。
3. DNL-means是一种深度学习的降噪方法,通过非局部均值滤波器的改进版本减少噪声。
要将这个思路转化为Python代码,你需要几个关键步骤:
1. 导入所需的库,如`cv2`, `numpy`, 和 `skimage` 等。
```python
import cv2
import numpy as np
from skimage.feature import hog
from skimage.util import random_noise
```
2. 定义HOG特征提取函数:
```python
def hog_feature(image):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
orientations, pixels_per_cell, cells_per_block = 9, (8, 8), (2, 2)
hog_image = hog(gray, orientations=orientations, pixels_per_cell=pixels_per_cell, cells_per_block=cells_per_block)
return hog_image
```
3. 自适应阈值(FreeMatch)处理:
```python
def adaptive_thresholding(image, method='otsu'):
_, thr = cv2.threshold(image, 0, 255, method)
return thr
```
4. DNL-means降噪:
```python
def dnl_means(image, patch_size=7, iter_num=10):
denoised = cv2.dnlMeans(image, None, patch_size, iter_num)
return denoised
```
5. 并行增强和降噪:
```python
def enhance_and_de noise_parallel(image, num_threads=4):
# 分割成多个小块
block_size = image.shape[:2] // num_threads
blocks = [image[i:i + block_size[0], j:j + block_size[1]] for i in range(0, image.shape[0], block_size[0]) for j in range(0, image.shape[1], block_size[1])]
# 同步并行操作
enhanced_blocks = Parallel(n_jobs=num_threads)(delayed(dnl_means)(enhanced_block) for enhanced_block in blocks if enhanced_block.size > 0)
# 合并结果
enhanced_image = np.zeros_like(image)
for idx, block in enumerate(enhanced_blocks):
enhanced_image[idx*block_size[0]:idx*block_size[0]+block_size[0], idx*block_size[1]:idx*block_size[1]+block_size[1]] = block
# 可选地,添加FreeMatch增强
enhanced_image = adaptive_thresholding(enhanced_image)
return enhanced_image
```
注意:这里假设你已经安装了`joblib`库来进行并行计算,如果没有安装可以使用`import joblib as Parallel`替换`Parallel`。
阅读全文