fama-french五因子模型python代码
时间: 2023-08-11 07:08:13 浏览: 258
Fama-French五因子模型的Python代码可以包括以下几个步骤:
1. 导入所需的库:
```python
import numpy as np
import pandas as pd
```
2. 定义标准化函数:
```python
def standardize_z(dt):
mean = dt.mean() # 截面数据均值
std = dt.std() # 截面数据标准差
return (dt - mean) / std
```
3. 标准化因子数据:
```python
factors_standardize = standardize_z(X) # 标准化因子数据
```
4. 计算过度矩阵S:
```python
M = (factors_standardize.shape\[0\] - 1) * np.cov(factors_standardize.T.astype(float))
D, U = np.linalg.eig(M) # 获取特征值和特征向量
U = np.mat(U) # 转换为np中的矩阵
d = np.mat(np.diag(D ** (-0.5))) # 对特征根元素开(-0.5)指数
S = U * d * U.T # 获取过度矩阵S
```
5. 获取对称正交矩阵:
```python
factors_orthogonal_mat = np.mat(factors_standardize) * S # 获取对称正交矩阵
factors_orthogonal = pd.DataFrame(factors_orthogonal_mat, columns=X.columns, index=factors_standardize.index)
```
6. 计算正交化后的因子相关性:
```python
F_o = factors_orthogonal.fillna(0).corr() # 正交化后的因子相关性
```
7. 计算正交化前的因子相关性(可选):
```python
F = X.fillna(0).corr() # 正交化前的因子相关性
```
请注意,上述代码中的X是指原始因子数据,你需要根据实际情况进行替换。此外,代码中的其他变量和函数可能需要根据你的具体需求进行调整。
#### 引用[.reference_title]
- *1* [Fama-French五因子模型](https://blog.csdn.net/m0_55389447/article/details/117604999)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* [Fama-French五因子模型实用攻略](https://blog.csdn.net/weixin_42219751/article/details/95627875)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item]
- *3* [fama-french五因子模型的python实现](https://blog.csdn.net/weixin_42642232/article/details/122249462)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文