用Python实现通过网格搜索+五折交叉验证方法选择多项逻辑回归的方法,从multinomial,ovo,ovr几种方式中选择
时间: 2024-11-12 16:45:12 浏览: 27
在Python中,我们可以使用scikit-learn库来实现网格搜索(Grid Search)结合五折交叉验证(5-Fold Cross Validation)来优化多项逻辑回归模型的选择。这里我们通常会关注`MultinomialNB`、`OneVsRestClassifier`(ovo)以及`OneVsOneClassifier`(ovr)这几种分类方式。以下是简化的步骤:
1. **导入所需的库**:
```python
from sklearn.datasets import load_iris
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.multiclass import OneVsRestClassifier, OneVsOneClassifier
```
2. **加载数据并预处理**:
```python
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42)
```
3. **定义逻辑回归分类器和策略组合**:
```python
lr_base = LogisticRegression(multi_class='auto') # 'auto'让sklearn自动选择
strategies = {'multi_class': ['multinomial', 'ova', 'ovr']}
ovr_lr = OneVsRestClassifier(lr_base)
ovo_lr = OneVsOneClassifier(lr_base)
```
4. **创建网格搜索对象**:
```python
param_grid = {
'ovr_lr': [{'estimator__multi_class': strategies}],
'ovo_lr': [{'estimator__multi_class': strategies}]
}
grid_searches = {'ovr': GridSearchCV(ovr_lr, param_grid, cv=5),
'ovo': GridSearchCV(ovo_lr, param_grid, cv=5)}
```
5. **运行网格搜索并评估模型**:
```python
for name, search in grid_searches.items():
search.fit(X_train, y_train)
best_params = search.best_params_
print(f"{name} Best parameters found: {best_params}")
best_clf = search.best_estimator_
```
6. **查看最佳模型的性能**:
```python
scores = search.cv_results_
print("Cross-validation scores:")
for name, score in zip(['ovr', 'ovo'], [scores['mean_test_score'][search.best_index_], scores['mean_test_score'][search.best_index_]]):
print(f"{name}: {score}")
```
7.
阅读全文