双向RRT三维避障算法
时间: 2023-08-26 08:04:19 浏览: 213
双向RRT(Rapidly-exploring Random Tree)是一种路径规划算法,用于在三维环境中进行避障。它基于随机采样的方式构建树结构,同时从起点和终点分别扩展,直到两个树相交为止。
在双向RRT算法中,起点和终点分别为两个树的根节点。算法的基本步骤如下:
1. 初始化两个树,一个从起点出发,一个从终点出发。
2. 随机采样一个节点作为扩展节点,并找到两个树中最近的节点。计算该扩展节点到最近节点的距离。
3. 如果两个树之间的距离小于设定的阈值,则认为两个树相交,算法终止。
4. 如果两个树之间的距离大于阈值,则将扩展节点添加到对应的树中,并以扩展节点为起点,向最近节点方向扩展一定距离。
5. 交替扩展两个树,直到两个树相交。
双向RRT算法的优势在于可以同时从起点和终点进行扩展,从而更快地找到可行路径。同时,该算法也可以处理复杂的三维环境,并考虑避障问题。
需要注意的是,双向RRT算法并不保证找到最优路径,只能找到一条可行路径。如果需要找到最优路径,可以结合其他优化方法,如A*搜索算法等。
相关问题
无人机避障算法 基于RRT-Star算法的无人机避障
以下是基于RRT-Star算法的无人机避障算法的介绍:
无人机避障算法需要考虑以下几个问题:
1. 如何表示无人机的状态和环境信息?
2. 如何生成避障路径?
3. 如何实现路径跟踪?
基于RRT-Star算法的无人机避障算法可以解决上述问题。具体步骤如下:
1. 状态表示:将无人机的状态表示为(x,y,z,roll,pitch,yaw),其中(x,y,z)表示无人机的位置,(roll,pitch,yaw)表示无人机的姿态。
2. 环境表示:将环境表示为三维网格地图,其中每个网格表示一个体素,体素的值表示该位置是否可行。
3. 路径搜索:使用RRT-Star算法在三维网格地图上搜索避障路径。具体来说,RRT-Star算法在树的生长过程中,不仅考虑到新节点到起点的距离,还考虑到新节点到目标点的距离和已有节点到新节点的距离,从而更加全面地评估节点的价值。在搜索到目标点后,RRT-Star算法采用路径优化策略对路径进行优化,以获得更短的路径。
4. 路径跟踪:使用控制器实现路径跟踪。具体来说,将路径离散化为一系列航点,然后使用控制器控制无人机沿着这些航点飞行。
用RRT*算法写一个无人机三维空间的避障路径规划MATLAB程序
好的,以下是一个基本的无人机三维空间的避障路径规划MATLAB程序。
首先,我们需要定义一个类来表示无人机。这个类包括位置、速度、加速度等属性,以及一些方法来更新这些属性。这里我们假设无人机可以以任意姿态飞行,因此我们需要使用四元数来表示无人机的方向。
```matlab
classdef UAV
properties
position % 当前位置 [x, y, z]
velocity % 当前速度 [vx, vy, vz]
acceleration % 当前加速度 [ax, ay, az]
orientation % 当前方向 [qw, qx, qy, qz]
max_speed % 最大飞行速度
max_acceleration % 最大加速度
end
methods
function obj = UAV(position, velocity, acceleration, orientation, max_speed, max_acceleration)
obj.position = position;
obj.velocity = velocity;
obj.acceleration = acceleration;
obj.orientation = orientation;
obj.max_speed = max_speed;
obj.max_acceleration = max_acceleration;
end
function obj = update(obj, dt)
% 根据当前速度和加速度更新位置和速度
obj.position = obj.position + obj.velocity * dt + 0.5 * obj.acceleration * dt^2;
obj.velocity = obj.velocity + obj.acceleration * dt;
end
function obj = set_acceleration(obj, acceleration)
% 设置加速度,但不允许超过最大加速度
obj.acceleration = acceleration;
if norm(obj.acceleration) > obj.max_acceleration
obj.acceleration = obj.max_acceleration * obj.acceleration / norm(obj.acceleration);
end
end
function obj = set_orientation(obj, orientation)
% 设置方向,但要保证四元数的模为1
obj.orientation = orientation / norm(orientation);
end
function obj = set_velocity(obj, velocity)
% 设置速度,但不允许超过最大速度
obj.velocity = velocity;
if norm(obj.velocity) > obj.max_speed
obj.velocity = obj.max_speed * obj.velocity / norm(obj.velocity);
end
end
end
end
```
接下来,我们需要定义一个类来表示障碍物。这个类包括位置、大小等属性,以及一些方法来检查无人机是否与障碍物相交。
```matlab
classdef Obstacle
properties
position % 障碍物中心位置 [x, y, z]
size % 障碍物大小 [dx, dy, dz]
end
methods
function obj = Obstacle(position, size)
obj.position = position;
obj.size = size;
end
function is_colliding = check_collision(obj, uav)
% 检查无人机是否与障碍物相交
p = uav.position;
r = max(uav.size) / 2;
q = obj.position;
s = obj.size / 2;
is_colliding = (abs(p(1) - q(1)) <= r + s(1)) && ...
(abs(p(2) - q(2)) <= r + s(2)) && ...
(abs(p(3) - q(3)) <= r + s(3));
end
end
end
```
然后,我们需要定义一个函数来生成一组随机目标点。这个函数会在三维空间中随机生成一些点,并检查这些点是否与障碍物相交。如果某个点与障碍物相交,则重新生成一个新的点。
```matlab
function goals = generate_goals(num_goals, obstacles, xmin, xmax, ymin, ymax, zmin, zmax)
goals = zeros(num_goals, 3);
for i = 1:num_goals
while true
x = xmin + rand() * (xmax - xmin);
y = ymin + rand() * (ymax - ymin);
z = zmin + rand() * (zmax - zmin);
is_colliding = false;
for j = 1:length(obstacles)
if obstacles(j).check_collision(UAV([x, y, z], [0, 0, 0], [0, 0, 0], [1, 0, 0, 0], 0, 0))
is_colliding = true;
break;
end
end
if ~is_colliding
goals(i, :) = [x, y, z];
break;
end
end
end
end
```
接下来,我们需要实现 RRT* 算法。这是一个基于 RRT 算法的路径规划算法,可以在具有复杂障碍物的三维空间中寻找无人机的安全路径。具体来说,算法会在空间中生成一棵随机生长的树,该树的根节点是无人机的起始位置,每个节点代表一个无人机所在的位置,每个节点的子节点是通过一些随机样本和反向链来生成的。在树生长过程中,算法会使用代价函数来评估每个节点和路径的优劣,以便找到一条在避开障碍物的同时尽可能直接到达目标位置的路径。
```matlab
function path = RRT_star(start_position, goal_positions, obstacles, xmin, xmax, ymin, ymax, zmin, zmax, max_iter, goal_tolerance)
% 参数定义
step_size = 1; % 每一步的最大距离
num_goals = size(goal_positions, 1);
num_obstacles = length(obstacles);
tree = struct('position', {}, 'parent', {}, 'cost', {}, 'children', {}); % 树的结构体
tree(1).position = start_position;
tree(1).parent = 0;
tree(1).cost = 0;
tree(1).children = [];
nearest_node = 1;
% 定义代价函数
function cost = compute_cost(uav)
cost = norm(uav.position - start_position);
end
% 定义近邻查找函数
function [nearest_node, min_dist] = find_nearest_node(position)
nearest_node = 0;
min_dist = inf;
for i = 1:length(tree)
dist = norm(tree(i).position - position);
if dist < min_dist
nearest_node = i;
min_dist = dist;
end
end
end
% 定义插入节点函数
function new_node = insert_node(parent_node, position)
uav = UAV(position, [0, 0, 0], [0, 0, 0], [1, 0, 0, 0], 0, 0);
uav.set_velocity(step_size * (position - tree(parent_node).position) / norm(position - tree(parent_node).position));
if norm(uav.velocity) > uav.max_speed
uav.set_velocity(uav.max_speed * uav.velocity / norm(uav.velocity));
end
uav.set_acceleration(zeros(1, 3));
uav.set_orientation([1, 0, 0, 0]);
is_colliding = false;
for i = 1:num_obstacles
if obstacles(i).check_collision(uav)
is_colliding = true;
break;
end
end
if is_colliding
new_node = 0;
else
new_node = length(tree) + 1;
tree(new_node).position = position;
tree(new_node).parent = parent_node;
tree(new_node).cost = tree(parent_node).cost + norm(position - tree(parent_node).position);
tree(new_node).children = [];
tree(parent_node).children(end+1) = new_node;
end
end
% 迭代生成树
for iter = 1:max_iter
% 生成随机目标点
if mod(iter, 10) == 0
goal_index = randi(num_goals);
goal_position = goal_positions(goal_index, :);
else
goal_position = start_position;
end
% 查找最近节点
[nearest_node, min_dist] = find_nearest_node(goal_position);
if nearest_node == 0
continue;
end
% 插入新节点
new_position = tree(nearest_node).position + step_size * (goal_position - tree(nearest_node).position) / min_dist;
new_node = insert_node(nearest_node, new_position);
if new_node == 0
continue;
end
% 更新近邻节点
for i = 1:length(tree)
if i == new_node || norm(tree(i).position - new_position) > step_size
continue;
end
uav = UAV(tree(i).position, [0, 0, 0], [0, 0, 0], [1, 0, 0, 0], 0, 0);
uav.set_velocity(step_size * (new_position - tree(i).position) / norm(new_position - tree(i).position));
if norm(uav.velocity) > uav.max_speed
uav.set_velocity(uav.max_speed * uav.velocity / norm(uav.velocity));
end
uav.set_acceleration(zeros(1, 3));
uav.set_orientation([1, 0, 0, 0]);
is_colliding = false;
for j = 1:num_obstacles
if obstacles(j).check_collision(uav)
is_colliding = true;
break;
end
end
if ~is_colliding
cost = tree(new_node).cost + norm(tree(i).position - new_position);
if tree(i).parent == 0 || cost < tree(i).cost
tree(i).parent = new_node;
tree(i).cost = cost;
end
end
end
% 检查是否到达目标点
if norm(new_position - goal_position) <= goal_tolerance
break;
end
end
% 生成最优路径
if nearest_node ~= 0
path = [tree(nearest_node).position];
while tree(nearest_node).parent ~= 0
nearest_node = tree(nearest_node).parent;
path = [tree(nearest_node).position; path];
end
else
path = [];
end
end
```
最后,我们可以使用上述函数来进行路径规划:
```matlab
% 定义起始点、目标点、障碍物等参数
start_position = [0, 0, 0];
goal_positions = generate_goals(10, obstacles, xmin, xmax, ymin, ymax, zmin, zmax);
obstacles = [Obstacle([5, 5, 5], [2, 2, 2]), Obstacle([-5, -5, -5], [2, 2, 2])];
xmin = -10;
xmax = 10;
ymin = -10;
ymax = 10;
zmin = -10;
zmax = 10;
max_iter = 1000;
goal_tolerance = 1;
% 进行路径规划
path = RRT_star(start_position, goal_positions, obstacles, xmin, xmax, ymin, ymax, zmin, zmax, max_iter, goal_tolerance);
% 绘制路径和障碍物
figure;
hold on;
for i = 1:length(obstacles)
draw_obstacle(obstacles(i));
end
plot3(path(:, 1), path(:, 2), path(:, 3), 'LineWidth',2);
plot3(goal_positions(:, 1), goal_positions(:, 2), goal_positions(:, 3), 'ro', 'MarkerSize', 10);
plot3(start_position(1), start_position(2), start_position(3), 'go', 'MarkerSize', 10);
axis equal;
xlabel('X');
ylabel('Y');
zlabel('Z');
% 定义绘制障碍物的函数
function draw_obstacle(obstacle)
x = obstacle.position(1) + [-1, -1, 1, 1, -1, -1, 1, 1] * obstacle.size(1) / 2;
y = obstacle.position(2) + [-1, 1, 1, -1, -1, 1, 1, -1] * obstacle.size(2) / 2;
z = obstacle.position(3) + [-1, -1, -1, -1, 1, 1, 1, 1] * obstacle.size(3) / 2;
patch(x, y, z, 'r');
end
```
阅读全文