if __name__ == '__main__': # 通过pandas读入数据 data = pd.read_excel('../1data.xls', encoding='utf-8', header=None) data.columns = ['class_label', 'text', 'tokens'] label = data['class_label'] categories = [] for i in label: if i in categories: pass else: categories.append(i) print(categories) le = preprocessing.LabelEncoder().fit_transform(data['class_label']) data["class_label"] = le # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(data["tokens"], data["class_label"], test_size=0.2, random_state=1) # 文本特征提取 X_train_tfidf, tfidf_vectorizer = tfidf(X_train) X_test_tfidf = tfidf_vectorizer.transform(X_test) modelFile = "SVMModel.m" # 训练保存模型 SVMClassify() # 预测测试集结果 SVMTest()

时间: 2024-02-14 18:31:31 浏览: 108
这部分代码是在主函数中进行数据预处理、模型训练和测试的过程。首先,你使用pandas库读取了一个Excel文件,并将数据命名为data。然后,你为数据的列名进行了命名,分别是'class_label'、'text'和'tokens'。 接下来,你提取了标签(label)并将其存储在categories列表中。这个循环遍历了标签(label)列表,如果标签(label)已经在categories列表中,则跳过,否则将其添加到categories列表中。 之后,你使用LabelEncoder对data['class_label']进行了编码,并将编码后的结果存储在le变量中。然后,将data["class_label"]更新为编码后的结果。 接着,你使用train_test_split函数将数据集划分为训练集(X_train, y_train)和测试集(X_test, y_test),其中测试集占总数据集的20%。 然后,你使用tfidf函数对训练集进行了文本特征提取,得到了训练集的tfidf表示(X_train_tfidf)和tfidf向量化器(tfidf_vectorizer)。 接下来,你指定了模型文件的路径(modelFile)。 然后,你调用了SVMClassify函数进行模型训练,并保存了训练好的模型。 最后,你调用了SVMTest函数对测试集进行预测,并输出了一些评估指标。
相关问题

import urllib3 import pandas as pd import os def download_content(url): http = urllib3.PoolManager() response = http.request("GET", url) response_data = response.data html_content = response_data.decode() return html_content def save_excel(): html_content = download_content("http://fx.cmbchina.com/Hq/") cmb_table_list = pd.read_html(html_content) cmb_table_list[1].to_excel("Bit&Yanan.xlsx") def main(): save_excel() if __name__ == '__main__': main() os.startfile("Bit&Yanan.xlsx") import pandas as pd import matplotlib.pyplot as plt import numpy as np plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 rapx = (114.4936096 - 112.6832583)/50 rapy = (23.87839806 - 22.49308313)/50 minx = 112.6832583+rapx*2 maxx = 114.4936096+rapx*2 miny = 22.49308313 maxy = 23.87839806 data = pd.read_excel("Bit&Yanan.xlsx") print(data.head()),继续完成用

pandas和matplotlib库分析和展示数据的任务。 首先,我们可以查看一下读入数据后的前几行,使用`.head()`函数,例如`print(data.head())`。 接下来,你可以使用pandas库进行数据的筛选和处理,例如选取特定列、按照某列进行排序、按照某列筛选数据等等。具体使用方法可以参考pandas的官方文档或者各种在线教程。 最后,你可以使用matplotlib库绘制各种图表,例如折线图、散点图、柱状图等等,来展示数据的规律和趋势。同样的,matplotlib库的使用方法可以参考官方文档或者各种在线教程。需要注意的是,matplotlib库的绘图需要一定的数学基础和美学素养,因此建议在实际操作中结合各种案例和实践经验,不断提高自己的绘图技能。

import pandas as pd import numpy as np from sklearn.cluster import DBSCAN from sklearn import metrics from sklearn.cluster import KMeans import os def dbscan(input_file): ## 纬度在前,经度在后 [latitude, longitude] columns = ['lat', 'lon'] in_df = pd.read_csv(input_file, sep=',', header=None, names=columns) # represent GPS points as (lat, lon) coords = in_df.as_matrix(columns=['lat', 'lon']) # earth's radius in km kms_per_radian = 6371.0086 # define epsilon as 0.5 kilometers, converted to radians for use by haversine # This uses the 'haversine' formula to calculate the great-circle distance between two points # that is, the shortest distance over the earth's surface # http://www.movable-type.co.uk/scripts/latlong.html epsilon = 0.5 / kms_per_radian # radians() Convert angles from degrees to radians db = DBSCAN(eps=epsilon, min_samples=15, algorithm='ball_tree', metric='haversine').fit(np.radians(coords)) cluster_labels = db.labels_ # get the number of clusters (ignore noisy samples which are given the label -1) num_clusters = len(set(cluster_labels) - set([-1])) print('Clustered ' + str(len(in_df)) + ' points to ' + str(num_clusters) + ' clusters') # turn the clusters in to a pandas series # clusters = pd.Series([coords[cluster_labels == n] for n in range(num_clusters)]) # print(clusters) kmeans = KMeans(n_clusters=1, n_init=1, max_iter=20, random_state=20) for n in range(num_clusters): # print('Cluster ', n, ' all samples:') one_cluster = coords[cluster_labels == n] # print(one_cluster[:1]) # clist = one_cluster.tolist() # print(clist[0]) kk = kmeans.fit(one_cluster) print(kk.cluster_centers_) def main(): path = './datas' filelist = os.listdir(path) for f in filelist: datafile = os.path.join(path, f) print(datafile) dbscan(datafile) if __name__ == '__main__': main()

这是一个 Python 代码,主要使用了 Pandas、NumPy、sklearn.cluster 等库实现了 DBSCAN 和 KMeans 聚类算法。代码读入了一个文件夹中的多个文件,每个文件都是 GPS 坐标点的经纬度信息,然后使用 DBSCAN 算法进行聚类,并且输出了聚类的个数。接着使用 KMeans 算法对每个聚类进行细分,最后输出每个聚类的中心点坐标。
阅读全文

相关推荐

import tensorflow as tf import numpy as np import tkinter as tk from tkinter import filedialog import time import pandas as pd import stock_predict as pred def creat_windows(): win = tk.Tk() # 创建窗口 sw = win.winfo_screenwidth() sh = win.winfo_screenheight() ww, wh = 800, 450 x, y = (sw - ww) / 2, (sh - wh) / 2 win.geometry("%dx%d+%d+%d" % (ww, wh, x, y - 40)) # 居中放置窗口 win.title('LSTM股票预测') # 窗口命名 f_open =open('dataset_2.csv') canvas = tk.Label(win) canvas.pack() var = tk.StringVar() # 创建变量文字 var.set('选择数据集') tk.Label(win, textvariable=var, bg='#C1FFC1', font=('宋体', 21), width=20, height=2).pack() tk.Button(win, text='选择数据集', width=20, height=2, bg='#FF8C00', command=lambda: getdata(var, canvas), font=('圆体', 10)).pack() canvas = tk.Label(win) L1 = tk.Label(win, text="选择你需要的 列(请用空格隔开,从0开始)") L1.pack() E1 = tk.Entry(win, bd=5) E1.pack() button1 = tk.Button(win, text="提交", command=lambda: getLable(E1)) button1.pack() canvas.pack() win.mainloop() def getLable(E1): string = E1.get() print(string) gettraindata(string) def getdata(var, canvas): global file_path file_path = filedialog.askopenfilename() var.set("注,最后一个为label") # 读取文件第一行标签 with open(file_path, 'r', encoding='gb2312') as f: # with open(file_path, 'r', encoding='utf-8') as f: lines = f.readlines() # 读取所有行 data2 = lines[0] print() canvas.configure(text=data2) canvas.text = data2 def gettraindata(string): f_open = open(file_path) df = pd.read_csv(f_open) # 读入股票数据 list = string.split() print(list) x = len(list) index=[] # data = df.iloc[:, [1,2,3]].values # 取第3-10列 (2:10从2开始到9) for i in range(x): q = int(list[i]) index.append(q) global data data = df.iloc[:, index].values print(data) main(data) def main(data): pred.LSTMtest(data) var.set("预测的结果是:" + answer) if __name__ == "__main__": creat_windows()这个代码能实现什么功能

最新推荐

recommend-type

python中时间转换datetime和pd.to_datetime详析

Pandas是一个强大的数据处理库,`pd.to_datetime` 专门设计用于处理数据框(DataFrame)中的时间数据。 (1)获取指定的时间和日期: `pd.to_datetime(date_value)` 与`datetime` 类相似,`pd.to_datetime` 可以...
recommend-type

pandas中read_csv的缺失值处理方式

在数据分析领域,Pandas库是不可或缺的工具,它提供了丰富的数据处理功能,其中包括读取CSV文件。`read_csv`函数是Pandas用于读取逗号分隔值(CSV)文件的关键方法,它能够将CSV数据转化为DataFrame对象。然而,CSV...
recommend-type

python基础教程:Python 中pandas.read_excel详细介绍

`pandas.read_excel`函数是用于从Excel文件中加载数据到DataFrame对象的一个关键方法。本篇文章将深入探讨`pandas.read_excel`的使用及其参数。 首先,`pandas.read_excel`的基本用法是导入pandas库,然后调用`read...
recommend-type

Pandas的read_csv函数参数分析详解

Pandas的`read_csv`函数是数据科学家和分析人员在处理CSV文件时最常用的工具之一。它能够方便地将CSV格式的数据导入到DataFrame对象中,提供了丰富的参数来满足各种复杂需求。下面,我们将深入探讨`read_csv`函数的...
recommend-type

基于纯verilogFPGA的双线性差值视频缩放 功能:利用双线性差值算法,pc端HDMI输入视频缩小或放大,然后再通过HDMI输出显示,可以任意缩放 缩放模块仅含有ddr ip,手写了 ram,f

基于纯verilogFPGA的双线性差值视频缩放 功能:利用双线性差值算法,pc端HDMI输入视频缩小或放大,然后再通过HDMI输出显示,可以任意缩放。 缩放模块仅含有ddr ip,手写了 ram,fifo 代码,可以较为轻松地移植到其他平台。 硬件平台:易灵思 ti60f225 EDA平台:efinity
recommend-type

JavaScript实现的高效pomodoro时钟教程

资源摘要信息:"JavaScript中的pomodoroo时钟" 知识点1:什么是番茄工作法 番茄工作法是一种时间管理技术,它是由弗朗西斯科·西里洛于1980年代末发明的。该技术使用一个定时器来将工作分解为25分钟的块,这些时间块之间短暂休息。每个时间块被称为一个“番茄”,因此得名“番茄工作法”。该技术旨在帮助人们通过短暂的休息来提高集中力和生产力。 知识点2:JavaScript是什么 JavaScript是一种高级的、解释执行的编程语言,它是网页开发中最主要的技术之一。JavaScript主要用于网页中的前端脚本编写,可以实现用户与浏览器内容的交云互动,也可以用于服务器端编程(Node.js)。JavaScript是一种轻量级的编程语言,被设计为易于学习,但功能强大。 知识点3:使用JavaScript实现番茄钟的原理 在使用JavaScript实现番茄钟的过程中,我们需要用到JavaScript的计时器功能。JavaScript提供了两种计时器方法,分别是setTimeout和setInterval。setTimeout用于在指定的时间后执行一次代码块,而setInterval则用于每隔一定的时间重复执行代码块。在实现番茄钟时,我们可以使用setInterval来模拟每25分钟的“番茄时间”,使用setTimeout来控制每25分钟后的休息时间。 知识点4:如何在JavaScript中设置和重置时间 在JavaScript中,我们可以使用Date对象来获取和设置时间。Date对象允许我们获取当前的日期和时间,也可以让我们创建自己的日期和时间。我们可以通过new Date()创建一个新的日期对象,并使用Date对象提供的各种方法,如getHours(), getMinutes(), setHours(), setMinutes()等,来获取和设置时间。在实现番茄钟的过程中,我们可以通过获取当前时间,然后加上25分钟,来设置下一个番茄时间。同样,我们也可以通过获取当前时间,然后减去25分钟,来重置上一个番茄时间。 知识点5:实现pomodoro-clock的基本步骤 首先,我们需要创建一个定时器,用于模拟25分钟的工作时间。然后,我们需要在25分钟结束后提醒用户停止工作,并开始短暂的休息。接着,我们需要为用户的休息时间设置另一个定时器。在用户休息结束后,我们需要重置定时器,开始下一个工作周期。在这个过程中,我们需要为每个定时器设置相应的回调函数,以处理定时器触发时需要执行的操作。 知识点6:使用JavaScript实现pomodoro-clock的优势 使用JavaScript实现pomodoro-clock的优势在于JavaScript的轻量级和易学性。JavaScript作为前端开发的主要语言,几乎所有的现代浏览器都支持JavaScript。因此,我们可以很容易地在网页中实现pomodoro-clock,用户只需要打开网页即可使用。此外,JavaScript的灵活性也使得我们可以根据需要自定义pomodoro-clock的各种参数,如工作时间长度、休息时间长度等。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【WebLogic客户端兼容性提升秘籍】:一站式解决方案与实战案例

![WebLogic](https://docs.oracle.com/cd/F28299_01/pt857pbr3/eng/pt/tsvt/img/ia2cf27cn-7b68.png) # 摘要 WebLogic作为一款广泛使用的中间件产品,其客户端兼容性对于企业应用至关重要。本文从基本概念出发,系统地介绍了WebLogic的架构、组件以及兼容性问题的分类和影响。通过深入分析兼容性测试方法和诊断分析技术,探讨了如何有效地识别和解决客户端兼容性问题。进一步,本文提出了提升兼容性的策略,包括代码层面的设计、配置管理、补丁升级以及快速响应流程。最后,结合实战案例,本文详细说明了解决方案的实施过
recommend-type

使用jupyter读取文件“近5年考试人数.csv”,绘制近5年高考及考研人数发展趋势图,数据如下(单位:万人)。

在Jupyter Notebook中读取CSV文件并绘制图表,通常需要几个步骤: 1. 首先,你需要导入必要的库,如pandas用于数据处理,matplotlib或seaborn用于数据可视化。 ```python import pandas as pd import matplotlib.pyplot as plt ``` 2. 使用`pd.read_csv()`函数加载CSV文件: ```python df = pd.read_csv('近5年考试人数.csv') ``` 3. 确保数据已经按照年份排序,如果需要的话,可以添加这一行: ```python df = df.sor
recommend-type

CMake 3.25.3版本发布:程序员必备构建工具

资源摘要信息:"Cmake-3.25.3.zip文件是一个包含了CMake软件版本3.25.3的压缩包。CMake是一个跨平台的自动化构建系统,用于管理软件的构建过程,尤其是对于C++语言开发的项目。CMake使用CMakeLists.txt文件来配置项目的构建过程,然后可以生成不同操作系统的标准构建文件,如Makefile(Unix系列系统)、Visual Studio项目文件等。CMake广泛应用于开源和商业项目中,它有助于简化编译过程,并支持生成多种开发环境下的构建配置。 CMake 3.25.3版本作为该系列软件包中的一个点,是CMake的一个稳定版本,它为开发者提供了一系列新特性和改进。随着版本的更新,3.25.3版本可能引入了新的命令、改进了用户界面、优化了构建效率或解决了之前版本中发现的问题。 CMake的主要特点包括: 1. 跨平台性:CMake支持多种操作系统和编译器,包括但不限于Windows、Linux、Mac OS、FreeBSD、Unix等。 2. 编译器独立性:CMake生成的构建文件与具体的编译器无关,允许开发者在不同的开发环境中使用同一套构建脚本。 3. 高度可扩展性:CMake能够使用CMake模块和脚本来扩展功能,社区提供了大量的模块以支持不同的构建需求。 4. CMakeLists.txt:这是CMake的配置脚本文件,用于指定项目源文件、库依赖、自定义指令等信息。 5. 集成开发环境(IDE)支持:CMake可以生成适用于多种IDE的项目文件,例如Visual Studio、Eclipse、Xcode等。 6. 命令行工具:CMake提供了命令行工具,允许用户通过命令行对构建过程进行控制。 7. 可配置构建选项:CMake支持构建选项的配置,使得用户可以根据需要启用或禁用特定功能。 8. 包管理器支持:CMake可以从包管理器中获取依赖,并且可以使用FetchContent或ExternalProject模块来获取外部项目。 9. 测试和覆盖工具:CMake支持添加和运行测试,并集成代码覆盖工具,帮助开发者对代码进行质量控制。 10. 文档和帮助系统:CMake提供了一个内置的帮助系统,可以为用户提供命令和变量的详细文档。 CMake的安装和使用通常分为几个步骤: - 下载并解压对应平台的CMake软件包。 - 在系统中配置CMake的环境变量,确保在命令行中可以全局访问cmake命令。 - 根据项目需要编写CMakeLists.txt文件。 - 在含有CMakeLists.txt文件的目录下执行cmake命令生成构建文件。 - 使用生成的构建文件进行项目的构建和编译工作。 CMake的更新和迭代通常会带来更好的用户体验和更高效的构建过程。对于开发者而言,及时更新到最新稳定版本的CMake是保持开发效率和项目兼容性的重要步骤。而对于新用户,掌握CMake的使用则是学习现代软件构建技术的一个重要方面。"