yolov5 spff
时间: 2023-12-07 22:39:37 浏览: 186
yolov5
根据引用[1]和引用,可以得知Yolov5中的SPFF是指SPP(Spatial Pyramid Pooling)和PAN(Path Aggregation Network)的融合。其中,SPP是一种空间金字塔池化方法,可以在不同尺度下对特征图进行池化,从而提取更加全局和丰富的特征信息。而PAN则是一种路径聚合网络,可以将不同层次的特征图进行聚合,从而提高检测精度。SPFF则是将这两种方法进行了融合,从而进一步提高了检测精度。
以下是Yolov5中SPFF的代码实现:
```python
class SPP(nn.Module):
def __init__(self, c1, c2, k=(5, 9, 13)):
super(SPP, self).__init__()
c_ = c1 // 2
self.cv1 = BasicConv(c1, c_, 1, 1)
self.cv2 = BasicConv(c_ * (len(k) + 1), c2, 1, 1)
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
def forward(self, x):
x = self.cv1(x)
x = torch.cat([x] + [m(x) for m in self.m], 1)
x = self.cv2(x)
return x
class PAN(nn.Module):
def __init__(self, c1, c2, up_f=2):
super(PAN, self).__init__()
self.up_f = up_f
self.dw_conv = BasicConv(c1, c2, 3, 2)
self.up_conv = nn.Sequential(
nn.Upsample(scale_factor=2, mode='nearest'),
BasicConv(c2, c2, 3, 1)
)
def forward(self, c, p):
c = self.dw_conv(c)
p = self.up_conv(p)
if self.up_f > 1:
p = F.interpolate(p, scale_factor=self.up_f, mode='nearest')
return c + p
```
阅读全文