有如下一组运动员100米短跑成绩 Powell:9.74 Green:9.79 Bolt:9.69 Burrell:9.85 Montgomery:9.78 Lewis:9.86 编写一个程序,按名次输出排名,姓名和成绩
时间: 2024-10-14 15:03:11 浏览: 16
可以编写一个简单的Python程序来按成绩对运动员进行排序并输出前几名。首先,我们需要将运动员的成绩和名字存储在一个字典列表中,然后根据成绩值对这个列表进行降序排序,最后按照新的顺序打印出来。
```python
# 运动员成绩数据
athletes = [
{"name": "Powell", "time": 9.74},
{"name": "Green", "time": 9.79},
{"name": "Bolt", "time": 9.69},
{"name": "Burrell", "time": 9.85},
{"name": "Montgomery", "time": 9.78},
{"name": "Lewis", "time": 9.86},
]
# 按照时间(成绩)从低到高排序
athletes.sort(key=lambda x: x["time"], reverse=True)
# 输出排名、姓名和成绩
for i, athlete in enumerate(athletes, start=1):
print(f"{i}. {athlete['name']} - 时间: {athlete['time']} 秒")
#
相关问题
写出python代码实现:1.将点云数据划分为若干个体素;2.对每个体素内的点云数据进行高斯分布拟合;3.计算每个体素内的点云数据与目标点云数据的匹配度;4.根据匹配度进行点云配准。
以下是 Python 代码实现:
1. 将点云数据划分为若干个体素:
```
import numpy as np
from sklearn.cluster import MeanShift
def voxel_downsample(points, voxel_size):
ms = MeanShift(bin_seeding=True, bandwidth=voxel_size)
ms.fit(points)
return ms.cluster_centers_
```
2. 对每个体素内的点云数据进行高斯分布拟合:
```
from scipy.stats import multivariate_normal
def fit_gaussian(points):
mean = np.mean(points, axis=0)
cov = np.cov(points.T)
return multivariate_normal(mean=mean, cov=cov)
```
3. 计算每个体素内的点云数据与目标点云数据的匹配度:
```
def compute_matching_score(source_points, target_points, voxel_size):
source_voxels = voxel_downsample(source_points, voxel_size)
target_voxels = voxel_downsample(target_points, voxel_size)
source_gaussians = [fit_gaussian(points) for points in source_voxels]
target_gaussians = [fit_gaussian(points) for points in target_voxels]
matching_score = 0
for source_gaussian in source_gaussians:
matching_score += max([source_gaussian.pdf(target_gaussian.mean) for target_gaussian in target_gaussians])
return matching_score
```
4. 根据匹配度进行点云配准:
```
from scipy.optimize import minimize
def point_cloud_registration(source_points, target_points, voxel_size):
def objective_function(x):
transformed_points = np.dot(source_points, x[:3, :3].T) + x[:3, 3]
return -compute_matching_score(transformed_points, target_points, voxel_size)
x0 = np.eye(4)
res = minimize(objective_function, x0, method='Powell')
return res.x[:3, :]
```
以上是 Python 代码实现,希望能对你有所帮助。
解释:def conjugate_gradient(fun, grad, x0, iterations, tol): """ Minimization of scalar function of one or more variables using the conjugate gradient algorithm. Parameters ---------- fun : function Objective function. grad : function Gradient function of objective function. x0 : numpy.array, size=9 Initial value of the parameters to be estimated. iterations : int Maximum iterations of optimization algorithms. tol : float Tolerance of optimization algorithms. Returns ------- xk : numpy.array, size=9 Parameters wstimated by optimization algorithms. fval : float Objective function value at xk. grad_val : float Gradient value of objective function at xk. grad_log : numpy.array The record of gradient of objective function of each iteration. """ fval = None grad_val = None x_log = [] y_log = [] grad_log = [] x0 = asarray(x0).flatten() # iterations = len(x0) * 200 old_fval = fun(x0) gfk = grad(x0) k = 0 xk = x0 # Sets the initial step guess to dx ~ 1 old_old_fval = old_fval + np.linalg.norm(gfk) / 2 pk = -gfk x_log = np.append(x_log, xk.T) y_log = np.append(y_log, fun(xk)) grad_log = np.append(grad_log, np.linalg.norm(xk - x_log[-1:])) gnorm = np.amax(np.abs(gfk)) sigma_3 = 0.01 while (gnorm > tol) and (k < iterations): deltak = np.dot(gfk, gfk) cached_step = [None] def polak_ribiere_powell_step(alpha, gfkp1=None): xkp1 = xk + alpha * pk if gfkp1 is None: gfkp1 = grad(xkp1) yk = gfkp1 - gfk beta_k = max(0, np.dot(yk, gfkp1) / deltak) pkp1 = -gfkp1 + beta_k * pk gnorm = np.amax(np.abs(gfkp1)) return (alpha, xkp1, pkp1, gfkp1, gnorm) def descent_condition(alpha, xkp1, fp1, gfkp1): # Polak-Ribiere+ needs an explicit check of a sufficient # descent condition, which is not guaranteed by strong Wolfe. # # See Gilbert & Nocedal, "Global convergence properties of # conjugate gradient methods for optimization", # SIAM J. Optimization 2, 21 (1992). cached_step[:] = polak_ribiere_powell_step(alpha, gfkp1) alpha, xk, pk, gfk, gnorm = cached_step # Accept step if it leads to convergence. if gnorm <= tol: return True # Accept step if sufficient descent condition applies. return np.dot(pk, gfk) <= -sigma_3 * np.dot(gfk, gfk) try: alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \ _line_search_wolfe12(fun, grad, xk, pk, gfk, old_fval, old_old_fval, c2=0.4, amin=1e-100, amax=1e100, extra_condition=descent_condition) except _LineSearchError: break # Reuse already computed results if possible if alpha_k == cached_step[0]: alpha_k, xk, pk, gfk, gnorm = cached_step else: alpha_k, xk, pk, gfk, gnorm = polak_ribiere_powell_step(alpha_k, gfkp1) k += 1 grad_log = np.append(grad_log, np.linalg.norm(xk - x_log[-1:])) x_log = np.append(x_log, xk.T) y_log = np.append(y_log, fun(xk)) fval = old_fval grad_val = grad_log[-1] return xk, fval, grad_val, x_log, y_log, grad_log
这是一个使用共轭梯度算法来最小化一个标量函数的函数。它的输入包括一个目标函数,一个梯度函数,一个初始值,迭代次数和容差。返回值包括参数的估计值,目标函数在该点的值,目标函数在该点的梯度值以及每次迭代中目标函数梯度的记录。这个算法使用了Polak-Ribiere共轭梯度法,并且在每次迭代中使用了Wolfe条件进行线搜索。算法的大致步骤是:首先计算梯度,然后使用Polak-Ribiere方向来计算下一步方向,然后使用Wolfe条件进行线搜索来确定步长。重复这个过程直到满足停止条件。
阅读全文