matlab 基于DE改进的NSGA-Ⅱ算法的matlab编码
时间: 2023-11-20 07:56:05 浏览: 79
很抱歉,我无法根据提供的引用内容回答您的问题。引用提到了基于NSGA-II的多目标进化算法的Matlab代码,而引用则提到了使用Matlab编写NSGA-2多目标优化算法的内容。但是,它们都没有提到基于DE改进的NSGA-Ⅱ算法的Matlab编码。如果您能提供更多相关信息或引用,我将非常乐意为您提供帮助。
相关问题
NSGA-Ⅱ算法 matlab代码
NSGA-II(Non-dominated Sorting Genetic Algorithm II)是一种常用的多目标优化算法,它是基于遗传算法的一种改进算法。NSGA-II算法通过非支配排序和拥挤度距离来维护种群的多样性,从而有效地解决了多目标优化问题。下面是NSGA-II算法的Matlab代码实现:
```
function [pop,fit] = nsga2(pop,fit,n,m,popsize,pcross,pmut)
% NSGA-II算法
% 输入:
% pop - 种群
% fit - 种群适应度
% n - 变量个数
% m - 目标个数
% popsize - 种群大小
% pcross - 交叉概率
% pmut - 变异概率
% 输出:
% pop - 新种群
% fit - 新种群适应度
% 计算拥挤度距离
function d = crowding_distance(f)
[m,n] = size(f);
d = zeros(m,1);
for i = 1:n
[~,idx] = sort(f(:,i));
d(idx(1)) = inf;
d(idx(end)) = inf;
for j = 2:m-1
d(idx(j)) = d(idx(j)) + (f(idx(j+1),i)-f(idx(j-1),i))/(f(idx(end),i)-f(idx(1),i));
end
end
end
% 非支配排序
function [F,S] = non_domination_sort(f)
[m,n] = size(f);
F{1} = [];
S{1} = zeros(m,1);
n(1) = 0;
for p = 1:m
S{1}(p) = 0;
for q = 1:m
if all(f(q,:)<=f(p,:)) && any(f(q,:)<f(p,:))
S{1}(p) = S{1}(p) + 1;
end
end
if S{1}(p) == 0
F{1} = [F{1} p];
n(1) = n(1) + 1;
end
end
i = 1;
while ~isempty(F{i})
Q = [];
for p = F{i}
for q = 1:m
if all(f(q,:)<=f(p,:)) && any(f(q,:)<f(p,:))
S{1}(q) = S{1}(q) - 1;
if S{1}(q) == 0
Q = [Q q];
n(i+1) = n(i+1) + 1;
end
end
end
end
i = i + 1;
F{i} = Q;
end
end
% 选择操作
function [pop,fit] = selection(pop,fit,n,m,popsize)
[m,n] = size(fit);
F = non_domination_sort(fit);
newpop = [];
newfit = [];
i = 1;
while length(newpop) + length(F{i}) <= popsize
% 按拥挤度距离排序
cd = crowding_distance(fit(F{i},:));
[~,idx] = sort(cd,'descend');
newpop = [newpop; pop(F{i}(idx),:)];
newfit = [newfit; fit(F{i}(idx),:)];
i = i + 1;
end
if length(newpop) < popsize
cd = crowding_distance(fit(F{i},:));
[~,idx] = sort(cd,'descend');
newpop = [newpop; pop(F{i}(idx(1:popsize-length(newpop))),:)];
newfit = [newfit; fit(F{i}(idx(1:popsize-length(newpop))),:)];
end
pop = newpop;
fit = newfit;
end
% 交叉操作
function pop = crossover(pop,pcross)
[m,n] = size(pop);
for i = 1:2:m
if rand < pcross
j = randi(n-1);
pop(i:i+1,j+1:end) = pop(i+1:-1:i,j+1:end);
end
end
end
% 变异操作
function pop = mutation(pop,pmut)
[m,n] = size(pop);
for i = 1:m
if rand < pmut
j = randi(n);
pop(i,j) = rand;
end
end
end
% 主程序
pop = rand(popsize,n);
fit = zeros(popsize,m);
for i = 1:popsize
fit(i,:) = objfun(pop(i,:));
end
for i = 1:100
pop = [pop; crossover(pop,pcross)];
pop = mutation(pop,pmut);
for j = popsize+1:size(pop,1)
fit(j,:) = objfun(pop(j,:));
end
[pop,fit] = selection(pop,fit,n,m,popsize);
end
end
```
其中,objfun是目标函数,需要根据具体问题进行定义。在使用该代码时,需要将objfun替换为自己定义的目标函数,并设置好其他参数。此外,该代码实现了非支配排序、拥挤度距离和选择操作,可以有效地维护种群的多样性。
使用python和matlab编写nsga-Ⅱ算法,哪一个更简单?
一般来说,使用Python编写NSGA-II算法会比使用Matlab更简单,主要有以下几个原因:
1. Python的语法比Matlab更加简洁易懂,尤其是在处理复杂的数据结构和算法时,Python的代码通常更加清晰易读。
2. Python有丰富的第三方库和工具,例如numpy、scipy、pandas等,这些库可以大大简化编程过程,并提供了高效的数值计算和数据处理能力。
3. Python是一种开源的编程语言,拥有庞大的社区和活跃的开发者,可以轻松地找到各种问题的解决方案和代码示例。
4. Python在深度学习和机器学习等领域拥有广泛的应用,可以方便地与其他领域的算法和工具进行集成,例如使用TensorFlow或PyTorch搭建神经网络模型。
当然,使用Matlab编写NSGA-II算法也是可行的,Matlab拥有丰富的工具箱和函数库,可以方便地进行数值计算和优化问题求解。但是,Matlab需要付费购买,而Python是一种免费的开源语言,因此在可行性和经济性上,Python更具优势。
阅读全文