matlab 基于DE改进的NSGA-Ⅱ算法的matlab编码
时间: 2023-11-20 16:56:05 浏览: 89
很抱歉,我无法根据提供的引用内容回答您的问题。引用提到了基于NSGA-II的多目标进化算法的Matlab代码,而引用则提到了使用Matlab编写NSGA-2多目标优化算法的内容。但是,它们都没有提到基于DE改进的NSGA-Ⅱ算法的Matlab编码。如果您能提供更多相关信息或引用,我将非常乐意为您提供帮助。
相关问题
NSGA-Ⅱ算法 matlab代码
NSGA-II(Non-dominated Sorting Genetic Algorithm II)是一种常用的多目标优化算法,它是基于遗传算法的一种改进算法。NSGA-II算法通过非支配排序和拥挤度距离来维护种群的多样性,从而有效地解决了多目标优化问题。下面是NSGA-II算法的Matlab代码实现:
```
function [pop,fit] = nsga2(pop,fit,n,m,popsize,pcross,pmut)
% NSGA-II算法
% 输入:
% pop - 种群
% fit - 种群适应度
% n - 变量个数
% m - 目标个数
% popsize - 种群大小
% pcross - 交叉概率
% pmut - 变异概率
% 输出:
% pop - 新种群
% fit - 新种群适应度
% 计算拥挤度距离
function d = crowding_distance(f)
[m,n] = size(f);
d = zeros(m,1);
for i = 1:n
[~,idx] = sort(f(:,i));
d(idx(1)) = inf;
d(idx(end)) = inf;
for j = 2:m-1
d(idx(j)) = d(idx(j)) + (f(idx(j+1),i)-f(idx(j-1),i))/(f(idx(end),i)-f(idx(1),i));
end
end
end
% 非支配排序
function [F,S] = non_domination_sort(f)
[m,n] = size(f);
F{1} = [];
S{1} = zeros(m,1);
n(1) = 0;
for p = 1:m
S{1}(p) = 0;
for q = 1:m
if all(f(q,:)<=f(p,:)) && any(f(q,:)<f(p,:))
S{1}(p) = S{1}(p) + 1;
end
end
if S{1}(p) == 0
F{1} = [F{1} p];
n(1) = n(1) + 1;
end
end
i = 1;
while ~isempty(F{i})
Q = [];
for p = F{i}
for q = 1:m
if all(f(q,:)<=f(p,:)) && any(f(q,:)<f(p,:))
S{1}(q) = S{1}(q) - 1;
if S{1}(q) == 0
Q = [Q q];
n(i+1) = n(i+1) + 1;
end
end
end
end
i = i + 1;
F{i} = Q;
end
end
% 选择操作
function [pop,fit] = selection(pop,fit,n,m,popsize)
[m,n] = size(fit);
F = non_domination_sort(fit);
newpop = [];
newfit = [];
i = 1;
while length(newpop) + length(F{i}) <= popsize
% 按拥挤度距离排序
cd = crowding_distance(fit(F{i},:));
[~,idx] = sort(cd,'descend');
newpop = [newpop; pop(F{i}(idx),:)];
newfit = [newfit; fit(F{i}(idx),:)];
i = i + 1;
end
if length(newpop) < popsize
cd = crowding_distance(fit(F{i},:));
[~,idx] = sort(cd,'descend');
newpop = [newpop; pop(F{i}(idx(1:popsize-length(newpop))),:)];
newfit = [newfit; fit(F{i}(idx(1:popsize-length(newpop))),:)];
end
pop = newpop;
fit = newfit;
end
% 交叉操作
function pop = crossover(pop,pcross)
[m,n] = size(pop);
for i = 1:2:m
if rand < pcross
j = randi(n-1);
pop(i:i+1,j+1:end) = pop(i+1:-1:i,j+1:end);
end
end
end
% 变异操作
function pop = mutation(pop,pmut)
[m,n] = size(pop);
for i = 1:m
if rand < pmut
j = randi(n);
pop(i,j) = rand;
end
end
end
% 主程序
pop = rand(popsize,n);
fit = zeros(popsize,m);
for i = 1:popsize
fit(i,:) = objfun(pop(i,:));
end
for i = 1:100
pop = [pop; crossover(pop,pcross)];
pop = mutation(pop,pmut);
for j = popsize+1:size(pop,1)
fit(j,:) = objfun(pop(j,:));
end
[pop,fit] = selection(pop,fit,n,m,popsize);
end
end
```
其中,objfun是目标函数,需要根据具体问题进行定义。在使用该代码时,需要将objfun替换为自己定义的目标函数,并设置好其他参数。此外,该代码实现了非支配排序、拥挤度距离和选择操作,可以有效地维护种群的多样性。
NSGA-Ⅱ算法精英选择matlab实现
NSGA-Ⅱ(非支配排序遗传算法II)是一个改进版的NSGA算法,它引入了两个关键改进:拥挤距离的概念和适应度分配法。在MATLAB中实现NSGA-Ⅱ的精英选择过程,主要包括以下几个步骤:
1. **非支配排序**:首先对群体进行排序,将个体划分为多个非劣化层(fronts),依据其Pareto非劣性和拥挤度。
2. **精英保留**:精英保留阶段会选择最好的几个个体直接进入下一代,这些个体通常是位于前几层的高质量个体。
3. **适应度分配**:对于非精英个体,会根据它们的非劣化程度分配适应度值,使得适应度较差但仍非劣化的个体有一定的生存机会。
4. **随机替换**:如果精英的数量超过下一代允许的最大个体数,可以选择部分非精英个体作为补充,这一步可能会涉及到随机抽样。
5. **更新下一代**:将保留下来的精英个体和部分非精英个体组合成新的群体,作为下一轮迭代的基础。
在MATLAB中实现这样的算法,可以利用内置数据结构和函数,如`sort`、`randperm`等,配合自定义的适应度评估函数和选择、交叉、变异等操作。下面是一段简单的伪代码示例:
```matlab
function offspring = eliteSelection(population)
% Step 1: Non-dominance sorting
fronts = dominanceSort(population);
% Step 2: Elite preservation
elites = population(fronts(1,:));
% Step 3: Fitness allocation
crowdedDistance = calculateCrowdedDistance(population);
combinedFitness = fitness + crowdedDistance;
% Step 4: Random replacement (if necessary)
if numel(elites) > maxIndividuals
nonElites = selectRandom(population, maxIndividuals - numel(elites));
else
nonElites = [];
end
% Step 5: Combine and return offspring
offspring = [elites; nonElites];
end
% ...其他辅助函数定义...
```
请注意,实际的MATLAB代码需要根据具体的优化问题和需求进行调整,并可能包含更详细的初始化、交叉、变异等遗传操作。
阅读全文
相关推荐














