介绍一下以下代码的逻辑 # data file path train_raw_path='./data/tianchi_fresh_comp_train_user.csv' train_file_path = './data/preprocessed_train_user.csv' item_file_path='./data/tianchi_fresh_comp_train_item.csv' #offline_train_file_path = './data/ccf_data_revised/ccf_offline_stage1_train.csv' #offline_test_file_path = './data/ccf_data_revised/ccf_offline_stage1_test_revised.csv' # split data path #active_user_offline_data_path = './data/data_split/active_user_offline_record.csv' #active_user_online_data_path = './data/data_split/active_user_online_record.csv' #offline_user_data_path = './data/data_split/offline_user_record.csv' #online_user_data_path = './data/data_split/online_user_record.csv' train_path = './data/data_split/train_data/' train_feature_data_path = train_path + 'features/' train_raw_data_path = train_path + 'raw_data.csv' #train_cleanedraw_data_path=train_path+'cleanedraw_data.csv' train_subraw_data_path=train_path+'subraw_data.csv' train_dataset_path = train_path + 'dataset.csv' train_subdataset_path=train_path+'subdataset.csv' train_raw_online_data_path = train_path + 'raw_online_data.csv' validate_path = './data/data_split/validate_data/' validate_feature_data_path = validate_path + 'features/' validate_raw_data_path = validate_path + 'raw_data.csv' #validate_cleaneraw_data_path=validate_path+'cleanedraw_data.csv' validate_dataset_path = validate_path + 'dataset.csv' validate_raw_online_data_path = validate_path + 'raw_online_data.csv' predict_path = './data/data_split/predict_data/' predict_feature_data_path = predict_path + 'features/' predict_raw_data_path = predict_path + 'raw_data.csv' predict_dataset_path = predict_path + 'dataset.csv' predict_raw_online_data_path = predict_path + 'raw_online_data.csv' # model path model_path = './data/model/model' model_file = '/model' model_dump_file = '/model_dump.txt' model_fmap_file = '/model.fmap' model_feature_importance_file = '/feature_importance.png' model_feature_importance_csv = '/feature_importance.csv' model_train_log = '/train.log' model_params = '/param.json' val_diff_file = '/val_diff.csv' # submission path submission_path = './data/submission/submission' submission_hist_file = '/hist.png' submission_file = '/tianchi_mobile_recommendation_predict.csv' # raw field name user_label = 'user_id' item_label = 'item_id' action_label = 'behavior_type' user_geohash_label='user_geohash' category_label='item_category' action_time_label='time' probability_consumed_label = 'Probability' # global values consume_time_limit = 15 train_feature_start_time = '20141119' train_feature_end_time = '20141217' train_dataset_time = '20141218' #train_dataset_end_time = '20141218' validate_feature_start_time = '20141118' validate_feature_end_time = '20141216' validate_dataset_time = '20141217' #validate_dataset_end_time = '20160514' predict_feature_start_time = '20141120' predict_feature_end_time = '20141218' predict_dataset_time = '20141219' #predict_dataset_end_time = '20160731'
时间: 2024-04-18 21:31:11 浏览: 161
这段代码主要是定义了一些文件路径和全局变量,方便后续数据处理和模型训练使用。
首先,代码定义了一些数据文件的路径,包括训练数据文件、商品数据文件等。这些路径可以根据实际情况进行修改。
接下来,代码定义了一些数据划分的路径,包括训练集、验证集和预测集的文件夹路径。这些路径用于存放数据划分后的特征数据、原始数据和数据集文件。
然后,代码定义了一些模型相关的路径,包括模型文件夹路径、模型文件名、模型输出文件等。这些路径用于存放训练好的模型以及相关的输出文件。
接着,代码定义了一些字段的名称,包括用户ID、商品ID、行为类型、用户地理哈希、商品类别、行为时间等。这些名称用于在数据处理和模型训练中标识相应的字段。
最后,代码定义了一些全局变量,包括消费时间限制、特征提取的起止时间、数据集时间等。这些变量用于在数据处理和特征提取过程中进行控制。
总体来说,这段代码主要是为了方便管理文件路径和全局变量,并提供了一些标识字段和控制变量,使得后续的数据处理和模型训练更加方便和可控。
相关问题
2016年阿里天池大赛,也是中国高校第一届大数据挑战赛的数据。数据包括两个表,分别是用户行为表mars_tianchi_user_actions.csv和歌曲艺人表mars_tianchi_songs.csv。大赛开放抽样的歌曲艺人数据,以及和这些艺人相关的6个月内(20150301-20150831)的用户行为历史记录。选手需要预测艺人随后2个月,即60天(20150901-20151030)的播放数据。. 对歌曲艺人数据mars_tianchi_songs进行处理,统计出艺人的个数以及每个艺人的歌曲数量。输出文件格式为exp2_1.csv,第一列为艺人的ID,第二列为该艺人的歌曲数目。最后一行输出艺人的个数。
根据题目要求,我们需要对歌曲艺人表进行处理,统计出艺人的个数以及每个艺人的歌曲数量。这里以Python为例,具体代码实现如下:
```python
import pandas as pd
# 读取歌曲艺人表
song_data = pd.read_csv('mars_tianchi_songs.csv')
# 按照艺人id进行分组,统计歌曲数量
artist_song_count = song_data.groupby('artist_id').size().reset_index(name='song_count')
# 将结果输出到exp2_1.csv文件中,并输出艺人的个数
artist_count = len(artist_song_count)
artist_song_count.to_csv('exp2_1.csv', index=False)
with open('exp2_1.csv', 'a') as f:
f.write(f'\n艺人的个数,{artist_count}')
```
上述代码中,首先读取了歌曲艺人表。然后按照艺人id进行分组,统计歌曲数量。最后,将结果输出到exp2_1.csv文件中,并输出艺人的个数。注意,在输出文件最后一行的时候,需要使用文件操作函数(如open函数)将内容追加到文件末尾。
阅读全文