关于损失精度函数曲线有没有具体的仿真图及代码?
时间: 2024-10-25 09:11:34 浏览: 19
损失精度函数曲线的示例通常是通过实际代码生成并展示的,这里提供一个简化的Python示例(使用TensorFlow和Keras),用于绘制训练过程中的损失和精度曲线:
```python
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
# 加载MNIST数据集
(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()
# 数据预处理
train_images, test_images = train_images / 255.0, test_images / 255.0
# 构建简单的卷积神经网络
model = models.Sequential([
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
layers.MaxPooling2D((2, 2)),
layers.Flatten(),
layers.Dense(64, activation='relu'),
layers.Dense(10)
])
# 编译模型
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
# 训练过程
history = model.fit(train_images, train_labels, epochs=10, validation_split=0.2)
# 绘制损失和精度曲线
loss = history.history['loss']
val_loss = history.history['val_loss']
accuracy = history.history['accuracy']
val_accuracy = history.history['val_accuracy']
epochs = range(1, len(loss) + 1)
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs, loss, 'bo', label='Training Loss')
plt.plot(epochs, val_loss, 'b', label='Validation Loss')
plt.title('Training and Validation Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(epochs, accuracy, 'bo', label='Training Accuracy')
plt.plot(epochs, val_accuracy, 'b', label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.tight_layout()
plt.show()
```
这个例子会创建一个简单的MNIST手写数字识别模型,并在每次训练轮次后更新损失和精度。运行这段代码,你会看到对应的学习过程的损失和精度曲线。你可以根据实际情况替换模型架构、数据集等。
阅读全文