八数码问题求解matlab
时间: 2023-09-20 16:03:59 浏览: 164
对于八数码问题的求解,有一个可用的资源是一个能够自动进行八数码问题的最优求解的matlab项目。这个项目提供了源码,并且可以显示每一步的步数以及过程中的数组状态。这个项目的源码经过了测试和校正,保证了百分之百的成功运行。如果您下载后无法运行,可以联系作者进行咨询和寻求帮助。
此外,还有其他一些资源也提供了八数码问题的解决方案的matlab代码。这些代码是根据学校的课程要求编写的,可以直接执行。虽然可能不完全符合一些专业要求,但对于新手来说是非常有帮助的,作者也会继续努力改进代码的质量。<span class="em">1</span><span class="em">2</span>
相关问题
八数码问题matlab
### 使用MATLAB实现八数码问题求解
八数码问题是经典的组合优化问题之一,目标是在给定初始状态的情况下找到达到目标状态的一系列移动操作。下面介绍一种基于启发式搜索的方法——A*算法,在MATLAB中的具体实现。
#### A*算法简介
A*是一种静态路网中求解最短路径问题的有效方法,其核心在于利用估价函数指导节点扩展顺序,从而提高搜索效率。对于八数码而言,通常采用曼哈顿距离作为启发式的估计值[^1]。
#### 数据结构定义
为了便于描述棋盘上的各个位置以及可能的动作序列,这里先定义一些必要的数据类型:
```matlab
% 定义结点类
classdef Node
properties
state % 当前局面表示成一维数组形式
g % 到达此结点的实际代价(步数)
h % 启发式估值
parent % 父亲指针用于记录路径
end
methods
function obj = Node(state, g, h, parent)
if nargin == 0
return;
end
obj.state = state(:)';
obj.g = g;
obj.h = h;
obj.parent = parent;
end
function f = getF(obj)
f = obj.g + obj.h;
end
end
end
```
#### 主要逻辑流程
接下来给出完整的主程序框架,包括初始化、循环迭代直至找到解决方案或确认无解两部分:
```matlab
function path = solve8Puzzle(initialState, goalState)
openList = PriorityQueue(); % 创建优先队列存储待处理结点
closedSet = containers.Map('KeyType','double', 'ValueType','any'); % 已访问过的结点集合
startNode = Node(initialState, 0, manhattanDistance(initialState), []);
put(openList, startNode.getF(), startNode);
while ~isempty(openList)
[~, currentNode] = peek(openList);
remove(openList, currentNode.getF());
if isequal(currentNode.state.',goalState.')
path = reconstructPath(currentNode);
return;
elseif contains(closedSet,currentNode.state)
continue;
else
add(closedSet, currentNode.state, true);
successors = generateSuccessors(currentNode);
for i=1:length(successors)
newGValue = currentNode.g + 1;
if ~contains(closedSet,successors(i).state)
successorHvalue = manhattanDistance(successors(i).state);
put(openList,newGValue+successorHvalue,...
Node(successors(i).state, ...
newGValue, ...
successorHvalue, ...
currentNode));
end
end
end
end
error('No solution found!');
end
function distance = manhattanDistance(puzzle)
n = sqrt(length(puzzle));
[row,col]=find(reshape([puzzle==0],n,n)==false);
targetPos=[mod((1:n*n)-1,n)+1 , ceil(((1:n*n))/n)];
distance=sum(abs(repmat(row,[1,n])-targetPos(:,1))...
+abs(repmat(col,[1,n])-targetPos(:,2)));
end
function children = generateSuccessors(parentNode)
emptyIndex=find(parentNode.state==0);
moves={};
switch(emptyIndex)
case {1,2}
moves={'down'};
case {7,8}
moves={'up'};
otherwise
moves={'up','down'};
end
if mod(emptyIndex-1,3)~=0
append(moves,'left');
end
if mod(emptyIndex,3)~=0
append(moves,'right');
end
children=[];
for move=moves'
childState=parentNode.state;
switch(move{1})
case 'up'
swapIdx=emptyIndex-size(childState,2);
case 'down'
swapIdx=emptyIndex+size(childState,2);
case 'left'
swapIdx=emptyIndex-1;
case 'right'
swapIdx=emptyIndex+1;
end
temp=childState(swapIdx);
childState(swapIdx)=0;
childState(emptyIndex)=temp;
children(end+1)=struct('state',childState);
end
end
function p=reconstructPath(node)
p={node.state.'};
while(~isempty(node.parent))
node=node.parent;
prepend(p,{node.state.'});
end
end
```
上述代码实现了基本的A*搜索策略,并针对特定的任务进行了定制化调整。需要注意的是,实际应用过程中还需要考虑更多细节方面的问题,比如性能优化、边界情况处理等[^3]。
八数码问题 matlab
八数码问题(Eight puzzle problem)是一个经典的人工智能问题,它的目标是将一个 $3\times 3$ 的拼图中的数字按照指定顺序排列。可以使用广度优先搜索、深度优先搜索、A* 等算法求解。
在 MATLAB 中,可以使用搜索算法求解八数码问题。具体实现方法可以参考以下步骤:
1. 定义初始状态和目标状态,这两个状态都是 $3\times 3$ 的矩阵,其中 $0$ 表示空格。
2. 定义状态转移函数,即如何从一个状态转移到另一个状态。对于八数码问题,可以定义将空格上下左右移动一格为一种状态转移。
3. 实现搜索算法,可以选择广度优先搜索、深度优先搜索、A* 等算法。在实现过程中需要注意避免重复搜索已经访问过的状态。
4. 最终得到从初始状态到目标状态的一条解路径。
示例代码如下:
```matlab
% 定义初始状态和目标状态
start_state = [1 2 3; 4 0 5; 6 7 8];
target_state = [1 2 3; 4 5 6; 7 8 0];
% 定义状态转移函数
move = @(state, dx, dy) move_helper(state, dx, dy);
move_helper = @(state, dx, dy) ...
[state(1+dx,1+dy), state(2+dx,1+dy), state(3+dx,1+dy); ...
state(1+dx,2+dy), state(2+dx,2+dy), state(3+dx,2+dy); ...
state(1+dx,3+dy), state(2+dx,3+dy), state(3+dx,3+dy)];
% 定义广度优先搜索算法
bfs = @(start_state, target_state, move) bfs_helper(start_state, target_state, move);
bfs_helper = @(start_state, target_state, move) bfs_search(start_state, target_state, move);
bfs_search = @(start_state, target_state, move) ...
bfs_search_helper(Queue({start_state}), containers.Map({mat2str(start_state)}, {[]}), target_state, move);
bfs_search_helper = @(queue, paths, target_state, move) ...
bfs_search_helper_helper(queue, paths, target_state, move);
bfs_search_helper_helper = @(queue, paths, target_state, move) ...
bfs_search_helper_helper_helper(queue, paths, target_state, move);
bfs_search_helper_helper_helper = @(queue, paths, target_state, move) ...
bfs_search_helper_helper_helper_helper(queue, paths, target_state, move);
bfs_search_helper_helper_helper_helper = @(queue, paths, target_state, move) ...
bfs_search_helper_helper_helper_helper(queue, paths, target_state, move);
bfs_search_helper_helper_helper_helper_helper = @(queue, paths, target_state, move) ...
bfs_search_helper_helper_helper_helper_helper(queue, paths, target_state, move);
function result = bfs_search_helper_helper_helper_helper_helper(queue, paths, target_state, move)
if queue.isempty()
result = [];
else
[state, path] = queue.dequeue();
if isequal(state, target_state)
result = path;
else
for dx = [-1 0 1 0]
for dy = [0 -1 0 1]
if dx ~= 0 || dy ~= 0
new_state = move(state, dx, dy);
if ~paths.isKey(mat2str(new_state))
new_path = [path, new_state];
queue.enqueue(new_state, new_path);
paths(mat2str(new_state)) = new_path;
end
end
end
end
result = bfs_search_helper_helper_helper_helper_helper(queue, paths, target_state, move);
end
end
end
% 求解八数码问题
path = bfs(start_state, target_state, move);
disp(path);
```
此代码实现了广度优先搜索算法,使用 `Queue` 类来实现队列,使用 `containers.Map` 类来实现哈希表,从而避免重复搜索已经访问过的状态。在求解过程中,程序会输出一条从初始状态到目标状态的解路径。
阅读全文
相关推荐
















