基于matlab三次指数平滑
时间: 2024-01-07 09:22:06 浏览: 128
基于Matlab的三次指数平滑可以使用以下公式进行计算:
```matlab
b = p / (2 * (1 - p)^2) * ((6 - 5 * p) * s1 - 2 * (5 - 4 * p) * s2 + (4 - 3 * p) * s3);
```
其中,`p`是平滑系数,`s1`、`s2`和`s3`是输入数据序列。这个公式可以用来计算三次指数平滑的结果。
请注意,这只是三次指数平滑的一个示例公式,具体的计算方法可能因应用场景的不同而有所变化。如果你需要更多关于三次指数平滑的信息,请提供更多的上下文或参考资料。
相关问题
三次指数平滑matlab实现
### 实现三次指数平滑算法
在MATLAB中实现三次指数平滑(也称为Holt-Winters方法),可以通过编写自定义函数来完成。该方法适用于具有趋势和季节性的数据集。
下面是一个完整的MATLAB代码示例,用于执行加法型Holt-Winters模型:
```matlab
function [level, trend, seasonal, forecast] = holtWintersAdditive(data, alpha, beta, gamma, seasonLength, nForecast)
% 初始化参数
T = length(data);
level = zeros(T, 1);
trend = zeros(T, 1);
seasonal = zeros(seasonLength, 1);
% 初始估计值设定
level(1) = data(1);
for i = 1:seasonLength
seasonal(i) = mean(data(i : seasonLength : end));
end
% 计算初始趋势
allSeasons = reshape(data(1:(seasonLength * floor(T / seasonLength))), seasonLength, []);
trend(1) = sum(mean(diff(allSeasons))) / seasonLength;
% 预测未来nForecast步的结果初始化
forecast = nan(nForecast, 1);
% 进行预测和平滑处理
for t = 2:T
if mod(t - 1, seasonLength) ~= 0
p = mod(t - 1, seasonLength);
else
p = seasonLength;
end
level(t) = alpha * (data(t) - seasonal(p)) + (1 - alpha) * (level(t-1) + trend(t-1));
trend(t) = beta * (level(t) - level(t-1)) + (1 - beta) * trend(t-1);
seasonal(mod(t, seasonLength) + (mod(t, seasonLength)==0)*seasonLength) ...
= gamma * (data(t) - level(t-1) - trend(t-1)) + (1-gamma) * seasonal(p);
% 输出预测结果
disp(['t=', num2str(t), ', Level:', num2str(level(t)), ', Trend:', num2str(trend(t)), ', Seasonal:', num2str(seasonal(mod(t, seasonLength)+double(mod(t, seasonLength)==0)*seasonLength))]);
end
% 对未来的预测
lastLevel = level(end);
lastTrend = trend(end);
for k = 1:nForecast
stepAheadIndex = mod(k, seasonLength)+(mod(k, seasonLength)==0)*seasonLength; %#ok<BDIV>
forecast(k) = lastLevel + k*lastTrend + seasonal(stepAheadIndex);
end
end
```
此代码实现了基于加法形式的Holt-Winters三重指数平滑算法,并能够对未来若干期做出预测[^1]。
对于乘法版本,则需调整相应部分以适应不同的误差假设结构;具体来说,在计算`forecast`时应采用相乘而非相加的方式组合水平分量(`level`)、趋势分量(`trend`)以及周期性变化(`seasonal`)。
阅读全文
相关推荐












