python AdaBoost
时间: 2023-11-11 09:01:02 浏览: 103
AdaBoost是一种集成学习算法,它通过组合多个弱分类器来构建一个强分类器。在AdaBoost中,每个弱分类器都被赋予一个权重,这些权重根据前一个弱分类器的性能进行调整。AdaBoost的核心思想是将多个弱分类器组合起来,以提高整体分类器的准确性。
在AdaBoost中,每个弱分类器都是一个简单的分类器,例如决策树或朴素贝叶斯分类器。这些弱分类器的输出被组合起来,形成一个强分类器。在每次迭代中,AdaBoost会调整每个弱分类器的权重,以使其更好地适应数据集。
AdaBoost的优点是可以提高分类器的准确性,并且可以处理高维数据集。缺点是对噪声和异常值比较敏感。
相关问题
Python实现adaboost
AdaBoost算法是一种集成学习方法,它能将多个弱分类器组合成一个强分类器。Python实现AdaBoost算法,可以使用第三方库scikit-learn,也可以手动实现。
使用scikit-learn的实现方法如下:
1.导入数据集和AdaBoost分类器:
```python
from sklearn.datasets import make_classification
from sklearn.ensemble import AdaBoostClassifier
```
2.生成数据集:
```python
X, y = make_classification(n_samples=1000, n_features=10, n_informative=4, n_redundant=0, random_state=0)
```
3.定义AdaBoost分类器:
```python
clf = AdaBoostClassifier(n_estimators=100, random_state=0)
```
4.训练分类器:
```python
clf.fit(X, y)
```
5.预测:
```python
y_pred = clf.predict(X)
```
手动实现的方法可以参考以下步骤:
1.定义弱分类器:
```python
def stump(X, y, weights):
n_samples, n_features = X.shape
feature_idx = 0
threshold = 0
polarity = 1
min_error = float('inf')
for i in range(n_features):
feature_values = np.expand_dims(X[:, i], axis=1)
unique_values = np.unique(feature_values)
for j in range(len(unique_values)):
threshold_tmp = unique_values[j]
for k in [-1, 1]:
yhat = np.ones(y.shape)
yhat[X[:, i] < threshold_tmp] = -1
error = weights.dot(yhat != y)
if error < min_error:
min_error = error
feature_idx = i
threshold = threshold_tmp
polarity = k
return feature_idx, threshold, polarity
```
2.定义AdaBoost算法:
```python
class AdaBoost:
def __init__(self, n_clf=5):
self.n_clf = n_clf
self.clfs = []
def fit(self, X, y):
n_samples, _ = X.shape
weights = np.full(n_samples, 1 / n_samples)
for _ in range(self.n_clf):
clf = stump(X, y, weights)
yhat = np.ones(y.shape)
feature_idx, threshold, polarity = clf
yhat[X[:, feature_idx] < threshold] = -1
error = weights.dot(yhat != y)
alpha = 0.5 * np.log((1 - error) / error + 1e-10)
weights *= np.exp(-alpha * y * yhat)
weights /= np.sum(weights)
self.clfs.append((clf, alpha))
def predict(self, X):
clf_preds = []
for clf, alpha in self.clfs:
feature_idx, threshold, polarity = clf
clf_pred = np.ones(X.shape[0])
clf_pred[X[:, feature_idx] < threshold] = -1
clf_preds.append(polarity * clf_pred * alpha)
y_pred = np.sum(clf_preds, axis=0)
return np.sign(y_pred)
```
3.训练和预测:
```python
clf = AdaBoost(n_clf=100)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
```
python实现adaboost
以下是Python实现AdaBoost的示例代码:
```
import numpy as np
class AdaBoost:
def __init__(self, n_estimators=50):
self.n_estimators = n_estimators
self.alpha = []
self.estimators = []
def fit(self, X, y):
n_samples = X.shape[0]
weights = np.ones(n_samples) / n_samples
for i in range(self.n_estimators):
tree = DecisionTreeClassifier(max_depth=1)
tree.fit(X, y, sample_weight=weights)
predictions = tree.predict(X)
error = weights.dot(predictions != y)
alpha = 0.5 * np.log((1 - error) / error)
self.alpha.append(alpha)
self.estimators.append(tree)
weights *= np.exp(-alpha * y * predictions)
weights /= np.sum(weights)
def predict(self, X):
predictions = np.zeros(X.shape[0])
for alpha, tree in zip(self.alpha, self.estimators):
predictions += alpha * tree.predict(X)
return np.sign(predictions)
```
该代码使用scikit-learn中的DecisionTreeClassifier作为基本分类器,使用样本权重来训练每个分类器,并使用指数损失函数来计算每个分类器的权重。最终的预测是每个分类器加权的和,其中权重由每个分类器的权重系数alpha给出。
阅读全文