pytorch实现maeloss
时间: 2023-11-05 09:56:38 浏览: 246
pytorch中没有内置的MAELoss函数。但可以通过自定义损失函数来实现MAE损失。下面是一个示例代码,展示了如何计算MAE损失。
```python
import torch
import torch.nn as nn
class MAELoss(nn.Module):
def __init__(self):
super(MAELoss, self).__init__()
def forward(self, input, target):
return torch.abs(input - target).mean()
# 使用示例
loss_fn = MAELoss()
input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5)
loss = loss_fn(input, target)
print("MAE Loss: ", loss)
```
相关问题
pytorch MAELoss
PyTorch does not provide a built-in implementation of the Mean Absolute Error (MAE) loss function. However, you can easily define it using PyTorch operations. Here's an example implementation:
```python
import torch
class MAELoss(torch.nn.Module):
def __init__(self):
super(MAELoss, self).__init__()
def forward(self, predictions, targets):
return torch.mean(torch.abs(predictions - targets))
```
You can use this custom MAELoss class in your PyTorch models by instantiating an object of it and calling it as a function, passing in your predictions and target tensors.
Here's an example usage:
```python
loss_function = MAELoss()
predictions = torch.tensor([1.0, 2.0, 3.0])
targets = torch.tensor([2.0, 2.5, 3.5])
loss = loss_function(predictions, targets)
print(loss.item()) # Print the loss value
```
This will calculate the MAE loss between the predictions and targets tensors.
阅读全文