ecognition机器学习面向对象分类详细过程
时间: 2023-08-18 21:02:14 浏览: 294
eCognition是一种基于机器学习的面向对象分类方法,该方法在遥感图像分析中被广泛应用。下面是eCognition的详细分类过程。
1. 数据准备:首先,需要准备一幅高分辨率的遥感图像,例如卫星影像或航空影像。这些图像可能包含多个波段的数据,如红、绿、蓝和红外波段。
2. 特征提取:在eCognition中,使用了一系列的特征来描述图像的每个对象。这些特征可以包括颜色、纹理、形状等特征。特征提取的目的是将图像转换为数值化的数据,以便后续的分类步骤。
3. 目标类的标记:在进行分类前,需要对图像中的目标类进行标记。标记可以通过手动绘制感兴趣区域 (ROIs) 来完成。ROIs 是根据人工的视觉判断来标记的,用于指导分类过程。
4. 训练数据选择:根据标记的 ROIs,从原始图像中选择一部分作为训练样本。训练样本应包含所研究的各个类别的典型情况。
5. 模型训练:使用机器学习算法,例如支持向量机 (SVM) 等,对训练样本进行训练。在训练过程中,机器学习算法会学习特征与类别之间的关系,并创建一个分类模型。
6. 模型测试和评估:使用训练好的模型对图像进行分类。未标记的像素根据模型所学习到的特征和类别关系进行分类。同时,可以使用一些评估指标,如准确性、召回率等,来评估分类结果的质量。
7. 精炼分类结果:根据实际需求,可以对分类结果进行进一步的优化和精炼。例如,可以进行后处理操作来减少分类错误或填补小的空洞区域。
8. 结果输出:根据处理的需求和目的,可以将分类结果输出为不同格式的数据,如栅格数据或矢量数据,以供后续分析和应用使用。
总之,eCognition机器学习面向对象分类方法通过特征提取和模型训练的方式,将遥感图像中的对象进行分类,从而实现对图像内容的自动解释和分析。这种方法具有较高的分类精度和适应性,因此在土地利用、资源管理等领域有广泛的应用。
阅读全文