Java编写word2vec
时间: 2023-08-03 22:04:14 浏览: 106
要在Java中编写word2vec,你可以使用deeplearning4j库。以下是一个简单的示例代码,展示了如何使用deeplearning4j实现word2vec:
```java
import org.deeplearning4j.models.embeddings.loader.WordVectorSerializer;
import org.deeplearning4j.models.word2vec.Word2Vec;
import org.deeplearning4j.text.sentenceiterator.BasicLineIterator;
import org.deeplearning4j.text.sentenceiterator.SentenceIterator;
import org.deeplearning4j.text.tokenization.tokenizerfactory.DefaultTokenizerFactory;
import org.deeplearning4j.text.tokenization.tokenizerfactory.TokenizerFactory;
import java.io.File;
public class Word2VecExample {
public static void main(String[] args) throws Exception {
// 设置语料库的路径
String filePath = "path_to_corpus.txt";
// 创建一个SentenceIterator来迭代语料库
SentenceIterator iter = new BasicLineIterator(filePath);
// 使用默认的分词器工厂创建一个TokenizerFactory
TokenizerFactory tokenizerFactory = new DefaultTokenizerFactory();
// 构建Word2Vec模型
Word2Vec vec = new Word2Vec.Builder()
.minWordFrequency(5)
.iterations(1)
.layerSize(100)
.seed(42)
.windowSize(5)
.iterate(iter)
.tokenizerFactory(tokenizerFactory)
.build();
// 训练Word2Vec模型
vec.fit();
// 保存模型到文件
WordVectorSerializer.writeWordVectors(vec, "path_to_save_model.txt");
// 加载模型
Word2Vec loadedVec = WordVectorSerializer.readWord2VecModel(new File("path_to_save_model.txt"));
// 使用模型进行相关操作
double similarity = loadedVec.similarity("word1", "word2");
System.out.println("Similarity between word1 and word2: " + similarity);
}
}
```
请注意,上述代码中的`path_to_corpus.txt`应替换为你的语料库文件的路径,`path_to_save_model.txt`应替换为你想要保存模型的文件路径。你还可以根据需要调整其他参数,如`minWordFrequency`(最小词频)、`layerSize`(词向量的维度)等。
希望这可以帮助你开始在Java中编写word2vec!
阅读全文