loss = self.loss(output, label) loss.backward() # add max grad clipping if self.args.grad_norm: torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.max_grad_norm) self.optimizer.step() total_loss += loss.item()
时间: 2024-02-14 08:31:35 浏览: 189
这段代码是一个典型的训练循环,用于计算和更新模型的损失。首先,通过调用`self.loss(output, label)`计算出模型输出和标签之间的损失值。然后,使用反向传播方法`loss.backward()`计算梯度,并通过调用`torch.nn.utils.clip_grad_norm_()`对梯度进行最大梯度裁剪,以防止梯度爆炸。最后,调用`self.optimizer.step()`来更新模型参数。最后,将当前损失值`loss.item()`添加到总损失`total_loss`中。
相关问题
for batch_idx, (data, target) in enumerate(self.train_loader): data = data[..., :self.args.input_dim] label = target[..., :self.args.output_dim] # (..., 1) self.optimizer.zero_grad() #teacher_forcing for RNN encoder-decoder model #if teacher_forcing_ratio = 1: use label as input in the decoder for all steps if self.args.teacher_forcing: global_step = (epoch - 1) * self.train_per_epoch + batch_idx teacher_forcing_ratio = self._compute_sampling_threshold(global_step, self.args.tf_decay_steps) else: teacher_forcing_ratio = 1. # data and target shape: B, T, N, F; output shape: B, T, N, F data, target维度均为64,12,307,1 output = self.model(data, target, teacher_forcing_ratio=teacher_forcing_ratio) if self.args.real_value: label = self.scaler.inverse_transform(label) loss = self.loss(output, label) loss.backward() # add max grad clipping if self.args.grad_norm: torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.max_grad_norm) self.optimizer.step() total_loss += loss.item()
这段代码是一个训练循环的一部分,用于对批次数据进行训练。代码中使用`enumerate(self.train_loader)`来遍历训练数据集,并在每个批次中进行以下操作:
1. 首先,通过`data[..., :self.args.input_dim]`和`target[..., :self.args.output_dim]`对输入数据和标签进行切片,以获取指定维度的子集。这是为了确保输入和标签的维度匹配。
2. 然后,调用`self.optimizer.zero_grad()`来清零模型参数的梯度。
3. 接下来,根据`self.args.teacher_forcing`的值来确定是否使用"teacher forcing"的方法。如果`self.args.teacher_forcing`为真,则计算当前批次的全局步数,并使用`self._compute_sampling_threshold()`方法计算出"teacher forcing"的比例。否则,将"teacher forcing"比例设置为1.0,表示在解码器中的所有步骤都使用标签作为输入。
4. 调用`self.model(data, target, teacher_forcing_ratio=teacher_forcing_ratio)`来获取模型的输出。如果`self.args.real_value`为真,则通过`self.scaler.inverse_transform(label)`将标签逆转换为原始值。
5. 计算模型输出和标签之间的损失,并将损失值添加到总损失`total_loss`中。
6. 调用`loss.backward()`计算梯度,并使用`torch.nn.utils.clip_grad_norm_()`对梯度进行最大梯度裁剪。
7. 最后,调用`self.optimizer.step()`来更新模型参数。
这个循环会遍历整个训练数据集,并在每个批次中计算和更新模型的损失。
阅读全文