VGG 卷积神经网络模型
时间: 2023-07-31 14:07:14 浏览: 135
卷积神经网络 示例代码 vgg13
VGG(Visual Geometry Group)是一种经典的卷积神经网络模型,由牛津大学的研究团队提出。VGG网络以其简洁明了的结构而闻名,它在2014年的ImageNet图像分类挑战中取得了很好的成绩。
VGG网络主要由卷积层和池化层组成,它使用了很小的卷积核大小(3×3),但是卷积层的深度较大,可以达到16或19层。这种深度结构使得VGG网络能够学习到更复杂、更抽象的特征表示。
VGG网络的基本结构是连续堆叠多个相同尺寸的卷积层和池化层,最后接全连接层进行分类。VGG网络中的卷积层使用了较小的步幅(stride)和填充(padding)来保持特征图的尺寸不变,而池化层则用来降低特征图的空间尺寸。VGG网络可以根据需要进行不同深度的堆叠,其中VGG-16和VGG-19是最常用的版本。
VGG网络的优点在于其简单、清晰的结构,易于理解和实现。然而,由于其深度较大,参数量较多,导致模型比较庞大,计算量较大,训练和推理速度较慢。近年来,一些后续的卷积神经网络模型如ResNet、Inception等在VGG的基础上做了改进和优化。
阅读全文