头歌任务描述 本关任务:使用pytorch框架编写GoogLeNet网络Inception模块代码实现正确的输出。
时间: 2024-12-17 14:36:25 浏览: 21
头歌任务描述涉及在PyTorch框架下实现GoogleNet网络的一个重要部分——Inception模块。Inception模块是GoogLeNet(也称为Inception-v1)的关键组件,它通过并行处理不同尺寸的特征图来增加模型的复杂性和表达能力。
以下是简化的Inception模块实现步骤:
```python
import torch
import torch.nn as nn
class InceptionModule(nn.Module):
def __init__(self, in_channels, out_channels):
super(InceptionModule, self).__init__()
# 这里包含四个分支,分别是1x1卷积、5x5卷积(S1)、3x3 SPP(空间金字塔池化)和1x1的最大池化+全连接
self.branch_1x1 = nn.Conv2d(in_channels, out_channels[0], kernel_size=1)
self.branch_5x5 = nn.Sequential(
nn.Conv2d(in_channels, out_channels[1], kernel_size=5, padding=2),
nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
)
self.branch_3x3_spp = nn.Sequential(
nn.Conv2d(in_channels, out_channels[2], kernel_size=3, padding=1),
nn.MaxPool2d(kernel_size=[3, 5, 7], stride=1, padding=1, dilation=[1, 2, 4])
)
self.branch_pool_proj = nn.Sequential(
nn.AvgPool2d(kernel_size=3, stride=1, padding=1),
nn.Conv2d(in_channels, out_channels[3], kernel_size=1)
)
def forward(self, x):
branch_1x1 = self.branch_1x1(x)
branch_5x5 = self.branch_5x5(x)
branch_3x3_spp = self.branch_3x3_spp(x)
branch_pool_proj = self.branch_pool_proj(x)
# 将所有分支的结果拼接在一起
output = torch.cat((branch_1x1, branch_5x5, branch_3x3_spp, branch_pool_proj), dim=1)
return output
# 实例化Inception模块,并将其添加到你的GoogLeNet架构中
inception_block = InceptionModule(in_channels, [out_channels_1, out_channels_2, out_channels_3, out_channels_4])
```
记得将`in_channels`和`out_channels`替换为你网络的实际输入通道数和期望输出通道数。
阅读全文