python属性加权聚合相似度算法,通过设置阈值实现实体对齐自动化,将合并阈值设置为 0.8,独立阈值设置为 0.5将两个实体进行对比的详细代码
时间: 2024-04-14 13:26:08 浏览: 78
以下是一个示例代码,用于实现属性加权聚合相似度算法并进行实体对齐自动化。代码中使用了阈值来控制实体对比的合并和独立。
```python
import numpy as np
from collections import Counter
# 计算两个字符串的相似度
def string_similarity(str1, str2):
str1 = set(str1.lower().split())
str2 = set(str2.lower().split())
intersection = len(str1 & str2)
union = len(str1 | str2)
return intersection / union
# 计算属性相似度
def attribute_similarity(attr1, attr2):
if isinstance(attr1, str) and isinstance(attr2, str):
return string_similarity(attr1, attr2)
elif isinstance(attr1, list) and isinstance(attr2, list):
counter1 = Counter(attr1)
counter2 = Counter(attr2)
intersection = sum((counter1 & counter2).values())
union = sum((counter1 | counter2).values())
return intersection / union
else:
return 0
# 计算实体相似度
def entity_similarity(entity1, entity2, weights):
total_similarity = 0
for attr1, attr2, weight in zip(entity1, entity2, weights):
attr_similarity = attribute_similarity(attr1, attr2)
total_similarity += attr_similarity * weight
return total_similarity
# 对比两个实体并进行自动化实体对齐
def align_entities(entities1, entities2, merge_threshold, independent_threshold):
num_entities1 = len(entities1)
num_entities2 = len(entities2)
merge_indices = []
independent_indices = []
for i in range(num_entities1):
for j in range(num_entities2):
similarity = entity_similarity(entities1[i], entities2[j], weights=[1, 1, 0.5])
if similarity >= merge_threshold:
merge_indices.append((i, j))
elif similarity >= independent_threshold:
independent_indices.append((i, j))
return merge_indices, independent_indices
# 示例数据
entities1 = [
["John Doe", "30", ["male", "engineer"]],
["Jane Smith", "25", ["female", "doctor"]],
["Bob Johnson", "35", ["male", "teacher"]]
]
entities2 = [
["John Doe", "31", ["male", "engineer"]],
["Jane Smith", "26", ["female", "physician"]],
["Alice Brown", "35", ["female", "teacher"]]
]
# 实体对比并进行自动化实体对齐
merge_threshold = 0.8
independent_threshold = 0.5
merge_indices, independent_indices = align_entities(entities1, entities2, merge_threshold, independent_threshold)
print("Merge Indices:")
for i, j in merge_indices:
print(f"Entity 1: {entities1[i]}, Entity 2: {entities2[j]}")
print("\nIndependent Indices:")
for i, j in independent_indices:
print(f"Entity 1: {entities1[i]}, Entity 2: {entities2[j]}")
```
在上面的代码中,`string_similarity` 函数用于计算两个字符串的相似度,`attribute_similarity` 函数用于计算属性的相似度。`entity_similarity` 函数用于计算实体的相似度,其中使用了权重来对不同属性进行加权。`align_entities` 函数用于对比两个实体并进行自动化实体对齐,根据设置的阈值将实体划分为合并和独立的情况。
请注意,这只是一个简单的示例代码,实际应用中可能需要根据具体情况进行调整和改进。
阅读全文