Python 无约束优化 黄金分割法代码

时间: 2024-09-24 19:12:36 浏览: 13
Python 中的无约束优化通常是指寻找一个函数的最大值或最小值,而不需要满足特定的边界条件。黄金分割法是一种古老的搜索算法,它基于黄金比例 (Golden Ratio) 来逼近最优解。这个方法并不是非常高效,但它简单直观。 下面是一个简单的黄金分割法的 Python 代码示例,用于寻找一个单峰函数的最大值: ```python def golden_section_search(f, a, b, tol=1e-6): phi = (1 + 5 ** 0.5) / 2 # Golden ratio (approximately 1.618033988749895) while b - a > tol: c = a + phi * (b - a) if f(c) < f(a): b = c else: a = c return (a + b) / 2 # 示例:找到函数f(x)在区间[0, 1]内的最大值 def test_func(x): return x**2 # 单峰函数 max_value = golden_section_search(test_func, 0, 1) print("Max value occurs at:", max_value)
相关问题

Python 无约束优化 斐波那契法 代码

在Python中,无约束优化通常是指寻找函数的最大值或最小值,而不需要特定的优化约束条件。斐波那契搜索(Fibonacci Search)是一种启发式算法,它利用了斐波那契数列的特点来进行查找操作,常用于数组或列表的搜索。 虽然斐波那契搜索本身并不是一种优化方法,但它可以作为解决优化问题的一种辅助技术。如果你想通过斐波那契序列来优化搜索过程,你可以编写一个简单的函数来模拟这种方法。下面是一个基本的斐波那契搜索的代码示例: ```python def fibonacci_search(arr, x): fib_m_minus_2 = 0 fib_m_minus_1 = 1 fib_m = fib_m_minus_1 + fib_m_minus_2 while fib_m < len(arr): fib_m_minus_2 = fib_m_minus_1 fib_m_minus_1 = fib_m fib_m = fib_m_minus_1 + fib_m_minus_2 offset = -1 while fib_m > 1: i = min(offset+fib_m_minus_2, len(arr)-1) if arr[i] < x: fib_m = fib_m_minus_1 fib_m_minus_1 = fib_m_minus_2 offset = i elif arr[i] > x: fib_m -= fib_m_minus_1 else: return i if fib_m_minus_1 and arr[offset+1] == x: return offset+1 return -1 # 示例 arr = [10, 22, 35, 40, 45] x = 40 result = fibonacci_search(arr, x) if result != -1: print(f"元素 {x} 的索引是:{result}") else: print(f"{x} 不在数组中")

阻尼Newton法求解无约束最优化函数python代码

以下是阻尼Newton法求解无约束最优化函数的Python代码: ```python import numpy as np def backtracking_line_search(f, grad_f, x, d, alpha=0.5, beta=0.5): t = 1 while f(x + t * d) > f(x) + alpha * t * np.dot(grad_f(x).T, d): t *= beta return t def damp_newton(f, grad_f, hess_f, x0, tol=1e-6, max_iter=1000): x = x0 for i in range(max_iter): grad = grad_f(x) hess = hess_f(x) d = np.linalg.solve(hess, -grad) t = backtracking_line_search(f, grad_f, x, d) x_new = x + t * d if np.linalg.norm(x_new - x) < tol: break x = x_new return x ``` 其中,`f`是目标函数,`grad_f`是目标函数的梯度,`hess_f`是目标函数的Hessian矩阵,`x0`是初始点,`tol`是收敛精度,`max_iter`是最大迭代次数。`backtracking_line_search`是回溯线性搜索的函数,用于确定步长`t`。`damp_newton`是阻尼Newton法的主函数,用于求解最优解`x`。

相关推荐

最新推荐

recommend-type

使用Python求解带约束的最优化问题详解

在本文中,我们将深入探讨如何使用Python来解决带有约束条件的最优化问题。最优化问题在许多领域,如工程、经济学、数据科学等,都扮演着至关重要的角色。Python提供了强大的库来处理这类问题,例如`sympy`和`scipy`...
recommend-type

Python实现投影法分割图像示例(一)

本文将探讨如何使用Python和OpenCV库通过投影法来分割图像。投影法是一种基于像素值统计的技术,常用于简单的阈值分割,尤其适用于文本检测等场景。 首先,我们需要导入必要的库,包括`cv2`(OpenCV的Python接口)...
recommend-type

python绘制BA无标度网络示例代码

这个示例代码对于理解BA无标度网络模型及其在Python中的实现具有很高的教学价值,同时也展示了如何使用`networkx`库进行网络分析和可视化的基本操作。学习这部分内容有助于深入理解复杂网络的特性,以及在实际问题中...
recommend-type

5行Python代码实现图像分割的步骤详解

本文主要探讨如何使用5行Python代码来实现这一过程,特别地,我们将利用PixelLib模块来简化语义分割和实例分割的实现。 首先,我们需要确保环境已部署好。在开始任何图像处理项目之前,确保已经安装了必要的库,如...
recommend-type

python实现图片中文字分割效果

这个简单的Python代码示例提供了一个基础的图像文字分割方案,它依赖于像素级别的比较来检测文字。然而,这种方法可能对复杂的场景和不同字体的文字识别效果有限。在实际应用中,更先进的方法如基于深度学习的模型...
recommend-type

IPQ4019 QSDK开源代码资源包发布

资源摘要信息:"IPQ4019是高通公司针对网络设备推出的一款高性能处理器,它是为需要处理大量网络流量的网络设备设计的,例如无线路由器和网络存储设备。IPQ4019搭载了强大的四核ARM架构处理器,并且集成了一系列网络加速器和硬件加密引擎,确保网络通信的速度和安全性。由于其高性能的硬件配置,IPQ4019经常用于制造高性能的无线路由器和企业级网络设备。 QSDK(Qualcomm Software Development Kit)是高通公司为了支持其IPQ系列芯片(包括IPQ4019)而提供的软件开发套件。QSDK为开发者提供了丰富的软件资源和开发文档,这使得开发者可以更容易地开发出性能优化、功能丰富的网络设备固件和应用软件。QSDK中包含了内核、驱动、协议栈以及用户空间的库文件和示例程序等,开发者可以基于这些资源进行二次开发,以满足不同客户的需求。 开源代码(Open Source Code)是指源代码可以被任何人查看、修改和分发的软件。开源代码通常发布在公共的代码托管平台,如GitHub、GitLab或SourceForge上,它们鼓励社区协作和知识共享。开源软件能够通过集体智慧的力量持续改进,并且为开发者提供了一个测试、验证和改进软件的机会。开源项目也有助于降低成本,因为企业或个人可以直接使用社区中的资源,而不必从头开始构建软件。 U-Boot是一种流行的开源启动加载程序,广泛用于嵌入式设备的引导过程。它支持多种处理器架构,包括ARM、MIPS、x86等,能够初始化硬件设备,建立内存空间的映射,从而加载操作系统。U-Boot通常作为设备启动的第一段代码运行,它为系统提供了灵活的接口以加载操作系统内核和文件系统。 标题中提到的"uci-2015-08-27.1.tar.gz"是一个开源项目的压缩包文件,其中"uci"很可能是指一个具体项目的名称,比如U-Boot的某个版本或者是与U-Boot配置相关的某个工具(U-Boot Config Interface)。日期"2015-08-27.1"表明这是该项目的2015年8月27日的第一次更新版本。".tar.gz"是Linux系统中常用的归档文件格式,用于将多个文件打包并进行压缩,方便下载和分发。" 描述中复述了标题的内容,强调了文件是关于IPQ4019处理器的QSDK资源,且这是一个开源代码包。此处未提供额外信息。 标签"软件/插件"指出了这个资源的性质,即它是一个软件资源,可能包含程序代码、库文件或者其他可以作为软件一部分的插件。 在文件名称列表中,"uci-2015-08-27.1"与标题保持一致,表明这是一个特定版本的软件或代码包。由于实际的文件列表中只提供了这一项,我们无法得知更多的文件信息,但可以推测这是一个单一文件的压缩包。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【PDF表格创建与编辑】:使用Apache PDFBox和iText库制作表格,表格处理不求人

![java 各种pdf处理常用库介绍与使用](https://img-blog.csdnimg.cn/img_convert/6ae15afdef45b1d8fe6d289f0065d18c.png) # 1. PDF表格创建与编辑概述 在当今数字化时代,PDF格式因其可移植性和可维护性成为了电子文档的首选。在诸多应用场景中,表格作为一种重要的信息传递工具,其创建与编辑的需求日益增长。本章节将为读者提供一个关于PDF表格创建与编辑的概述,为后续章节中使用Apache PDFBox和iText库进行深入探讨奠定基础。 ## 1.1 PDF表格的作用与重要性 PDF表格在商务沟通、数据分析
recommend-type

python输出txt文件

在Python中,你可以使用内置的`open()`函数来创建和写入TXT文件。下面是一个简单的例子: ```python # 打开文件(如果不存在则创建) with open('example.txt', 'w') as file: # 写入文本内容 file.write('这是你要写入的内容') # 如果你想追加内容而不是覆盖原有文件 # 使用 'a' 模式(append) # with open('example.txt', 'a') as file: # file.write('\n这是追加的内容') # 关闭文件时会自动调用 `close()` 方法,但使
recommend-type

高频组电赛必备:掌握数字频率合成模块要点

资源摘要信息:"2022年电赛 高频组必备模块 数字频率合成模块" 数字频率合成(DDS,Direct Digital Synthesis)技术是现代电子工程中的一种关键技术,它允许通过数字方式直接生成频率可调的模拟信号。本模块是高频组电赛参赛者必备的组件之一,对于参赛者而言,理解并掌握其工作原理及应用是至关重要的。 本数字频率合成模块具有以下几个关键性能参数: 1. 供电电压:模块支持±5V和±12V两种供电模式,这为用户提供了灵活的供电选择。 2. 外部晶振:模块自带两路输出频率为125MHz的外部晶振,为频率合成提供了高稳定性的基准时钟。 3. 输出信号:模块能够输出两路频率可调的正弦波信号。其中,至少有一路信号的幅度可以编程控制,这为信号的调整和应用提供了更大的灵活性。 4. 频率分辨率:模块提供的频率分辨率为0.0291Hz,这样的精度意味着可以实现非常精细的频率调节,以满足高频应用中的严格要求。 5. 频率计算公式:模块输出的正弦波信号频率表达式为 fout=(K/2^32)×CLKIN,其中K为设置的频率控制字,CLKIN是外部晶振的频率。这一计算方式表明了频率输出是通过编程控制的频率控制字来设定,从而实现高精度的频率合成。 在高频组电赛中,参赛者不仅需要了解数字频率合成模块的基本特性,还应该能够将这一模块与其他模块如移相网络模块、调幅调频模块、AD9854模块和宽带放大器模块等结合,以构建出性能更优的高频信号处理系统。 例如,移相网络模块可以实现对信号相位的精确控制,调幅调频模块则能够对信号的幅度和频率进行调整。AD9854模块是一种高性能的DDS芯片,可以用于生成复杂的波形。而宽带放大器模块则能够提供足够的增益和带宽,以保证信号在高频传输中的稳定性和强度。 在实际应用中,电赛参赛者需要根据项目的具体要求来选择合适的模块组合,并进行硬件的搭建与软件的编程。对于数字频率合成模块而言,还需要编写相应的控制代码以实现对K值的设定,进而调节输出信号的频率。 交流与讨论在电赛准备过程中是非常重要的。与队友、指导老师以及来自同一领域的其他参赛者进行交流,不仅可以帮助解决技术难题,还可以相互启发,激发出更多创新的想法和解决方案。 总而言之,对于高频组的电赛参赛者来说,数字频率合成模块是核心组件之一。通过深入了解和应用该模块的特性,结合其他模块的协同工作,参赛者将能够构建出性能卓越的高频信号处理设备,从而在比赛中取得优异成绩。