用python 计算农行股票定投
时间: 2024-10-15 12:07:48 浏览: 18
python实现基金定投并可视化结果(及时止损)
在Python中计算农业银行(A股)的股票定投策略,通常需要结合历史股价数据、定投金额、投资周期等因素。以下是一个简单的步骤概述:
1. **获取数据**:首先你需要从可靠的金融数据源(如Yahoo Finance、腾讯理财通API等)获取农业银行的历史股价数据。你可以使用`pandas_datareader`库或者`tushare`这样的Python库来下载。
```python
import pandas as pd
from pandas_datareader import data as pdr
if __name__ == "__main__":
stock_code = "601988" # 农业银行的A股代码
start_date = "YYYY-MM-DD"
end_date = "YYYY-MM-DD"
stock_df = pdr.get_data_yahoo(stock_code, start=start_date, end=end_date)
```
2. **计算平均成本价**:根据定投策略(比如定期买入固定金额或百分比),计算每期投入后累计的成本价格。
```python
def calculate_average_cost(price_series, amount_per_period):
total_investment = price_series[-1] * amount_per_period # 最后一期的投资总额
shares_bought = total_investment / price_series
average_cost = shares_bought.sum() / len(shares_bought)
return average_cost
average_cost = calculate_average_cost(stock_df['Close'], 500) # 每月投资500元示例
```
3. **分析收益**:对比定投后的平均成本价和当前股价,计算理论收益。
```python
current_price = stock_df['Close'][-1]
return_percentage = (current_price - average_cost) / average_cost * 100
print(f"定投收益率:{return_percentage:.2f}%")
```
4. **模拟定投**:如果你想要模拟多次定投并查看结果分布,可以编写循环来反复执行上述步骤。
```python
# 模拟定投
num_simulations = 100
simulated_returns = []
for _ in range(num_simulations):
simulated_returns.append(calculate_average_cost(stock_df['Close'].sample(frac=1), amount_per_period))
mean_return = sum(simulated_returns) / num_simulations
std_deviation = simulated_returns.std()
print(f"平均模拟收益率:{mean_return:.2f}%")
print(f"标准差:{std_deviation:.2f}%")
```
注意:这只是一个基础的示例,实际操作时还需要考虑交易费用、税费等因素,并对数据处理和异常情况进行妥善处理。此外,股市投资存在风险,以上代码仅供参考学习,实际操作请谨慎决策。
阅读全文