for e=1:n_epoch perm = randperm(n_train); for i = 1:n_train ni = perm(i); best_j = -1; picked_y = labels(ni); while(picked_y==labels(ni)) picked_y = randi(n_class); end [max_score, best_j] = argmaxOverMatrices(X(ni,:), Y(:,picked_y), W); [best_score_yi, best_j_yi] = argmaxOverMatrices(X(ni,:), Y(:,labels(ni)), W); if(max_score + 1 > best_score_yi) if(best_j==best_j_yi) W{best_j} = W{best_j} - eta * X(ni,:)' * (Y(:,picked_y) - Y(:,labels(ni)))'; else W{best_j} = W{best_j} - eta * X(ni,:)' * Y(:,picked_y)'; W{best_j_yi} = W{best_j_yi} + eta * X(ni,:)' * Y(:,labels(ni))'; end end end end
时间: 2024-04-13 15:27:26 浏览: 155
这段代码是一个训练循环,用于训练一个分类器。让我来解释一下这段代码的逻辑:
首先,代码使用一个循环来迭代训练多个epoch(训练轮数)。在每个epoch中,代码通过随机排列训练样本的索引来创建一个perm数组。
然后,代码使用另一个循环遍历训练样本。对于每个样本,代码首先选择一个与当前样本标签不同的随机标签picked_y。
接下来,代码调用argmaxOverMatrices函数来计算当前样本与picked_y标签对应的最高分数及其索引best_j。同时,代码还计算了当前样本与其真实标签labels(ni)对应的最高分数及其索引best_j_yi。
然后,代码通过比较max_score + 1和best_score_yi的大小来检查当前预测的标签是否比真实标签更好。如果是,则进入条件块。
在条件块内部,代码首先检查best_j是否等于best_j_yi。如果是,则更新W{best_j}的权重以减小与picked_y标签的差异,并增加与labels(ni)标签的相似性。
如果best_j和best_j_yi不相等,则分别更新W{best_j}和W{best_j_yi}的权重,以减小与picked_y标签的差异和增加与labels(ni)标签的相似性。
最后,代码继续迭代下一个训练样本,直到完成所有训练样本的遍历。
整个过程将重复执行n_epoch次,以便进行多轮训练。
这段代码实现了一个简单的多类别分类器的训练过程,通过更新权重W来最小化标签预测的错误。
相关问题
以下代码出现函数或变量 'Net_Built' 无法识别的错误,请改正确:%% 导入数据 digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','nndemos', ... 'nndatasets','DigitDataset'); imds = imageDatastore(digitDatasetPath, ... 'IncludeSubfolders',true,'LabelSource','foldernames'); % 图像展示 figure; perm = randperm(10000,20); for i = 1:20 subplot(4,5,i); imshow(imds.Files{perm(i)}); end %% 数据整理与归一化 labelCount = countEachLabel(imds);% 查看各类图片的数量及对应的分类标签 img = readimage(imds,1); % 设置输入图像的大小 fprintf('输入图像的大小为:'); disp(size(img)); % 指定训练集和测试集合 numTrainFiles = 750; % 指定训练集总共包含750个图像 [imdsTrain,imdsValidation] = splitEachLabel(imds,numTrainFiles,'randomize'); % 将图片与对应的标签分开,即分成输入与输出 %% 网络定义以及训练 [layers,options] = Net_Built(imdsValidation); analyzeNetwork(layers); net = trainNetwork(imdsTrain,layers,options); %% 网络分类预测 YPred = classify(net,imdsValidation); YValidation = imdsValidation.Labels; accuracy = sum(YPred == YValidation)/numel(YValidation); fprintf('分类测试的正确率为:'); disp(accuracy); plot(YPred); hold on plot(YValidation); hold off legend('预测分类','实际分类'); title('CNN实际测试情况'); xlabel('样本'); ylabel('分类数值');
该代码中的错误是 `Net_Built` 函数或变量未定义。可能是因为该函数或变量未在代码中定义或者在代码的其他位置定义了。
为了解决这个问题,你需要定义 `Net_Built` 函数或变量,或者将其替换为已定义的函数或变量。
例如,你可以将 `Net_Built` 替换为一个现有的卷积神经网络模型,例如 ResNet 或 VGG。或者你可以自己编写一个函数来定义网络结构。以下是一个自定义网络结构的示例代码:
```matlab
function [layers,options] = Net_Built(imdsValidation)
% 定义网络结构
layers = [
imageInputLayer([28 28 1])
convolution2dLayer(5, 20)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
fullyConnectedLayer(10)
softmaxLayer
classificationLayer];
% 定义训练选项
options = trainingOptions('adam', ...
'MaxEpochs', 5, ...
'MiniBatchSize', 128, ...
'Shuffle', 'every-epoch', ...
'Verbose', false, ...
'Plots', 'training-progress');
end
```
将上述代码添加到你的代码中,即可解决 `Net_Built` 未定义的问题。
阅读全文