图神经网络的jupyter代码
时间: 2024-10-19 17:06:51 浏览: 42
在Python中使用Jupyter Notebook创建图神经网络(Graph Neural Networks, GNNs)通常涉及使用像PyTorch Geometric (PyG)或TensorFlow-GPU这样的库。以下是一个简短的例子,展示了如何用PyTorch Geometric构建一个基本的图卷积模型:
```python
# 导入必要的库
import torch
from torch_geometric.nn import GCNConv
from torch_geometric.data import Data
# 假设我们有一个边列表和节点特征
edge_index = torch.tensor([[0, 1, 1, 2], [1, 0, 2, 1]]) # 两个节点的邻接矩阵
x = torch.randn(3, 16) # 三个节点的特征,形状为 (num_nodes, feature_dim)
# 创建Data对象
data = Data(x=x, edge_index=edge_index)
# 定义一个简单的GCN层
class GraphConv(torch.nn.Module):
def __init__(self, in_channels, out_channels):
super(GraphConv, self).__init__()
self.conv = GCNConv(in_channels, out_channels)
def forward(self, data):
x = self.conv(data.x, data.edge_index)
return x
# 使用定义的GCN层
model = GraphConv(x.size(1), 8) # 输入通道数和输出通道数
out = model(data) # 进行前向传播
```
在这个例子中,`GCNConv`是图卷积层的核心组件,`Data`类是处理图数据的基本结构。你可以根据需要添加更多的层、损失函数和优化器。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)