RBF神经网络与BP神经网络
时间: 2023-12-16 07:04:20 浏览: 106
RBF神经网络
RBF神经网络和BP神经网络是两种常见的神经网络模型,它们有以下不同点:
1. 求解方法不同:BP神经网络使用误差反向传播算法进行训练,而RBF神经网络使用径向基函数进行训练。
2. 局部逼近和全局逼近:BP神经网络是全局逼近网络,而RBF神经网络是局部逼近网络。
3. 隐层节点数不同:BP神经网络的隐层节点数没有限制,而RBF神经网络的隐层节点数通常比较少。
下面是两个神经网络的Python实现:
1. BP神经网络
```python
from sklearn.neural_network import MLPRegressor
import numpy as np
# 构造数据集
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([0, 1, 1, 0])
# 构造BP神经网络
clf = MLPRegressor(hidden_layer_sizes=(4,), activation='logistic', solver='lbfgs')
# 训练模型
clf.fit(X, y)
# 预测结果
print(clf.predict(X))
```
2. RBF神经网络
```python
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import euclidean_distances
import numpy as np
# 构造数据集
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([0, 1, 1, 0])
# 使用KMeans算法初始化RBF神经网络的中心点
kmeans = KMeans(n_clusters=2, random_state=0).fit(X)
centers = kmeans.cluster_centers_
# 计算径向基函数的宽度
width = euclidean_distances(centers, centers).mean()
# 计算径向基函数的值
rbf = np.exp(-euclidean_distances(X, centers) ** 2 / (2 * width ** 2))
# 构造RBF神经网络
w = np.linalg.pinv(rbf).dot(y)
# 预测结果
print(rbf.dot(w))
```
阅读全文