An Interpretable Station Delay Prediction Model Based on Graph Community Neural Network and Time-Series Fuzzy Decision Tree的代码
时间: 2024-10-08 11:27:18 浏览: 36
基于图社区神经网络(Graph Community Neural Network, GCN)和时间序列模糊决策树(Time-Series Fuzzy Decision Tree, TSFDT)的可解释性强的列车延误预测模型是一种结合了深度学习和传统机器学习技术的复杂算法。这类模型通常用于交通领域的应用,如铁路运输系统的实时调度优化。
其核心代码可能会包括以下几个部分:
1. **数据预处理**:
```python
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
# 加载数据
data = pd.read_csv('train_data.csv')
scaler = MinMaxScaler()
# 归一化时间序列特征
data[['delay', 'weather', ...]] = scaler.fit_transform(data[['delay', 'weather', ...]])
```
2. **构建图社区神经网络**:
```python
import torch_geometric.nn as pyg_nn
import torch_geometric.data
def build_gcn_layer():
return pyg_nn.GraphConv(..., add_self_loops=True)
model = Sequential(
build_gcn_layer(), # GCN层
ReLU(),
build_gcn_layer(), # 可能还有其他GCN层
)
```
3. **时间序列模糊决策树组件**:
```python
from tsfuzzy import FuzzyDecisionTreeRegressor
tree = FuzzyDecisionTreeRegressor(...)
```
4. **集成模型**:
```python
class IntegratedModel(nn.Module):
def __init__(self):
super().__init__()
self.gcn = model
self.tsft = tree
def forward(self, x, graph):
gcn_output = self.gcn(x, graph)
tsft_input = gcn_output.view(-1, ...)
delay_pred = self.tsft(tsft_input)
return delay_pred
```
5. **训练和预测**:
```python
optimizer = Adam(model.parameters(), lr=0.01)
for epoch in range(num_epochs):
train_loss = train_model(model, data_train, optimizer)
validate_loss = evaluate_model(model, data_val)
# 预测阶段
with torch.no_grad():
test_delay_pred = integrated_model(test_data.x, test_data.edge_index)
```
阅读全文