写一个高斯求积公式计算0到1上sinx/x
时间: 2024-11-09 18:29:50 浏览: 5
牛顿科特斯求积公式
要使用高斯求积公式(也称为辛普森法则)来近似积分 `∫(0,1) sin(x)/x dx`,我们需要先定义函数、确定积分区间和选择适当的阶数。辛普森法则适用于二次多项式插值,因此我们通常用于三个节点(这里是等间距的节点)。以下是实现这一计算的Matlab代码:
```matlab
function simpsonIntegral = gaussQuadratureSinXOverX(a, b, n)
% a and b are the limits of integration (0 and 1 in this case)
% n is the number of intervals for Simpson's rule
if n ~= round(n) || n < 2
error('Number of intervals must be an integer greater than or equal to 2.');
end
% Define the function to integrate
f = @(x) sin(x)./x;
% Set up the interval and nodes for Simpson's rule
dx = (b - a) / (2 * n);
x = a + dx * (0:2:n - 1);
% Calculate the integral using Simpson's rule
integral = (dx/3) * sum(f(x(1:end-2)) + 4*f(x(2:end-1)) + f(x(end)));
simpsonIntegral = integral;
end
% Call the function with the desired parameters
a = 0; % Lower limit of integration
b = 1; % Upper limit of integration
n_intervals = 8; % Number of intervals for Simpson's rule
integral_approximation = gaussQuadratureSinXOverX(a, b, n_intervals);
disp(['Approximate integral value: ' num2str(integral_approximation)])
```
运行这段代码后,它将输出 `∫(0,1) sin(x)/x dx` 的辛普森法近似值。
阅读全文