DBN模型matlab代码
时间: 2024-03-20 15:37:50 浏览: 130
DBN(Deep Belief Network)是一种深度学习模型,它由多个受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)组成。DBN模型在机器学习中被广泛应用于特征学习和生成模型等任务。
以下是一个使用Matlab实现DBN模型的简单示例代码:
```matlab
% 导入数据
data = load('data.mat');
trainData = data.trainData;
testData = data.testData;
% 设置DBN模型参数
numLayers = 3; % DBN的层数
hiddenSizes = [100, 200, 300]; % 每一层的隐藏单元数量
% 训练每一层的RBM
rbmLayers = cell(1, numLayers);
for i = 1:numLayers
if i == 1
inputSize = size(trainData, 2);
rbmLayers{i} = trainRBM(trainData, hiddenSizes(i));
else
inputSize = hiddenSizes(i-1);
rbmLayers{i} = trainRBM(hiddenActivations, hiddenSizes(i));
end
hiddenActivations = sigmoid(bsxfun(@plus, trainData * rbmLayers{i}.Weights, rbmLayers{i}.HiddenBiases));
trainData = hiddenActivations;
end
% Fine-tuning:使用反向传播算法微调DBN模型
dbn = fineTuneDBN(rbmLayers, trainData, labels);
% 在测试集上进行预测
predictedLabels = predict(dbn, testData);
% 计算准确率
accuracy = sum(predictedLabels == trueLabels) / numel(trueLabels);
% 辅助函数:训练RBM
function rbm = trainRBM(data, hiddenSize)
numEpochs = 100; % 训练轮数
learningRate = 0.1; % 学习率
numVisibleUnits = size(data, 2);
rbm = struct();
rbm.Weights = randn(numVisibleUnits, hiddenSize);
rbm.VisibleBiases = zeros(1, numVisibleUnits);
rbm.HiddenBiases = zeros(1, hiddenSize);
for epoch = 1:numEpochs
% 正向传播
hiddenActivations = sigmoid(bsxfun(@plus, data * rbm.Weights, rbm.HiddenBiases));
hiddenStates = hiddenActivations > rand(size(hiddenActivations));
% 反向传播
visibleActivations = sigmoid(bsxfun(@plus, hiddenStates * rbm.Weights', rbm.VisibleBiases));
visibleStates = visibleActivations > rand(size(visibleActivations));
% 更新权重和偏置
deltaWeights = learningRate * (data' * hiddenActivations - visibleStates' * hiddenStates) / size(data, 1);
deltaVisibleBiases = learningRate * sum(data - visibleStates) / size(data, 1);
deltaHiddenBiases = learningRate * sum(hiddenActivations - hiddenStates) / size(data, 1);
rbm.Weights = rbm.Weights + deltaWeights;
rbm.VisibleBiases = rbm.VisibleBiases + deltaVisibleBiases;
rbm.HiddenBiases = rbm.HiddenBiases + deltaHiddenBiases;
end
end
% 辅助函数:使用反向传播算法微调DBN模型
function dbn = fineTuneDBN(rbmLayers, trainData, labels)
numClasses = numel(unique(labels));
dbn = struct();
dbn.rbmLayers = rbmLayers;
dbn.Weights = cell(1, numel(rbmLayers));
dbn.Biases = cell(1, numel(rbmLayers));
% 初始化权重和偏置
for i = 1:numel(rbmLayers)
if i == 1
inputSize = size(trainData, 2);
else
inputSize = rbmLayers{i-1}.hiddenSize;
end
dbn.Weights{i} = randn(inputSize, rbmLayers{i}.hiddenSize);
dbn.Biases{i} = zeros(1, rbmLayers{i}.hiddenSize);
end
% Fine-tuning
options = optimset('MaxIter', 100);
dbn = fminunc(@(params) crossEntropyCost(params, trainData, labels, numClasses, dbn), [dbn.Weights(:); dbn.Biases(:)], options);
% 辅助函数:计算交叉熵损失函数
function cost = crossEntropyCost(params, data, labels, numClasses, dbn)
numLayers = numel(dbn.rbmLayers);
dbn.Weights = reshape(params(1:numel(dbn.Weights)), size(dbn.Weights));
dbn.Biases = reshape(params(numel(dbn.Weights)+1:end), size(dbn.Biases));
% 正向传播
activations = cell(1, numLayers+1);
activations{1} = data;
for i = 1:numLayers
activations{i+1} = sigmoid(bsxfun(@plus, activations{i} * dbn.Weights{i}, dbn.Biases{i}));
end
% 计算交叉熵损失
output = softmax(bsxfun(@plus, activations{end} * dbn.Weights{end}, dbn.Biases{end}));
cost = -sum(sum(labels .* log(output))) / size(data, 1);
end
end
% 辅助函数:sigmoid函数
function output = sigmoid(x)
output = 1 ./ (1 + exp(-x));
end
% 辅助函数:softmax函数
function output = softmax(x)
output = exp(x) ./ sum(exp(x), 2);
end
```
请注意,这只是一个简单的示例代码,实际应用中可能需要根据具体问题进行适当的修改和调整。另外,为了运行该代码,你需要提供训练数据和测试数据,并将其保存为`data.mat`文件。
阅读全文