deepsort质心轨迹公式
时间: 2024-03-31 21:31:15 浏览: 69
基于质心运动轨迹法在ATM视频监控中的异常行为识别
4星 · 用户满意度95%
DeepSORT(Deep Learning + SORT)是一种目标跟踪算法,用于在视频中跟踪和识别多个目标。它结合了深度学习和SORT(Simple Online and Realtime Tracking)算法,能够在复杂的场景中实现高效准确的目标跟踪。
DeepSORT的质心轨迹公式是用来计算目标的质心轨迹的。质心轨迹是指目标在一段时间内的位置变化情况,通常用一系列坐标点表示。DeepSORT使用卡尔曼滤波器来预测目标的位置,并通过计算目标与已有轨迹之间的相似度来进行关联和更新。
具体而言,DeepSORT的质心轨迹公式可以表示为:
1. 预测步骤:
- 使用卡尔曼滤波器预测目标的位置和速度。
- 根据预测结果计算目标的质心位置。
2. 关联步骤:
- 计算当前帧中检测到的目标与已有轨迹之间的相似度。
- 根据相似度进行目标与轨迹的关联。
3. 更新步骤:
- 根据关联结果更新已有轨迹的状态和位置。
- 添加新的轨迹或删除无效的轨迹。
通过不断的预测、关联和更新,DeepSORT能够实现对目标的准确跟踪和识别。
阅读全文