利用Python编程语言结合粒子群算法,求解下列函数 在[-5.12.5.12]的最小值,并画出函 f(xy)=20+x2+y-10cos(2tx)-10cos(2ty)
时间: 2024-11-18 13:16:07 浏览: 8
在Python中,你可以使用科学计算库如`scipy.optimize`结合粒子群优化算法(PSO,Particle Swarm Optimization)来解决非线性优化问题,比如寻找函数f(x,y) = 20 + x^2 + y - 10 * cos(2tx) - 10 * cos(2ty)在指定范围内[-5, 12]内的最小值。粒子群算法是一种模拟鸟群觅食行为的搜索方法。
首先,你需要安装必要的库,如果还没有的话:
```bash
pip install numpy scipy matplotlib
```
然后,你可以编写一段示例代码来实现这个过程:
```python
import numpy as np
from scipy.optimize import minimize
import matplotlib.pyplot as plt
# 定义目标函数
def fitness_function(position, t):
x, y = position
cost = 20 + x**2 + y - 10 * np.cos(2 * t[0] * x) - 10 * np.cos(2 * t[1] * y)
return cost
# 初始化参数和粒子群
t = (np.random.uniform(-np.pi, np.pi), np.random.uniform(-np.pi, np.pi)) # 变换参数
n_particles = 50
particle_pos = np.random.uniform(-5, 12, (n_particles, 2))
particle_vel = np.zeros_like(particle_pos)
w = 0.7 # 学习因子
c1, c2 = 2.0, 2.0 # 社会加速和认知加速常数
# 迭代粒子群优化算法
for _ in range(100): # 设置迭代次数
for i in range(n_particles):
r1, r2 = np.random.rand(2)
p_best_pos[i] = particle_pos[i] if fitness_function(particle_pos[i], t) < particle_best_fitness[i] else particle_best_pos[i]
g_best_pos = particle_pos[np.argmin(particle_best_fitness)] if particle_best_fitness[i] < global_best_fitness else g_best_pos
vel_new = w * vel + c1 * r1 * (p_best_pos[i] - particle_pos[i]) + c2 * r2 * (g_best_pos - particle_pos[i])
pos_new = particle_pos[i] + vel_new
# 确保新位置在给定范围内
pos_new = np.clip(pos_new, a_min=-5, a_max=12)
# 更新速度和位置
particle_vel[i] = vel_new
particle_pos[i] = pos_new
particle_fitness[i] = fitness_function(particle_pos[i], t)
# 找到全局最优解
global_best_pos = particle_pos[np.argmin(particle_fitness)]
global_best_fitness = min(particle_fitness)
# 记录最佳位置
best_solution = {"position": global_best_pos, "fitness": global_best_fitness}
# 绘制函数图像
x_grid = np.linspace(-5, 12, 100)
y_grid = np.linspace(-5, 12, 100)
X, Y = np.meshgrid(x_grid, y_grid)
Z = fitness_function(np.vstack((X.ravel(), Y.ravel())), t)
plt.contourf(X, Y, Z.reshape(X.shape), cmap='coolwarm')
plt.colorbar()
plt.scatter(*best_solution["position"], color='red', label="最优解", marker='x')
plt.xlabel("x")
plt.ylabel("y")
plt.title("f(x,y) 最小值区域")
plt.legend()
plt.show()
print(f"最优解: {best_solution['position']}, 最小值: {best_solution['fitness']}")
阅读全文