51单片机实现dht11控制继电器

时间: 2023-05-15 18:03:42 浏览: 109
51单片机是一种常用的微控制器,在物联网等各种智能控制领域广泛应用。要实现DHT11控制继电器,首先需要了解DHT11是一种数字温湿度传感器,能够通过单总线接口向微处理器发送数字信号,读取温湿度值。然后,通过单片机控制继电器的开关状态,从而实现对电器设备的控制。 具体实现步骤如下: 1. 确定使用的51单片机型号,并准备相应的软硬件环境。 2. 连接DHT11传感器和继电器模块到单片机,设置好引脚接口。 3. 编写串口通信程序,通过单总线协议从DHT11传感器读取温湿度值。 4. 根据所需的控制逻辑编写程序,将温度和湿度值与设定值进行比较,判断是否需要开启或关闭继电器。 5. 对继电器控制逻辑进行反馈和调试,确保设备能正确响应控制信号。 总之,51单片机实现DHT11控制继电器是一项相对较为简单的任务。通过良好的规划和编码,可以让你的设备在智能化控制方面得到有效运用。
相关问题

51单片机控制DHT11的代码

以下是51单片机控制DHT11的代码,供参考: ``` #include <reg51.h> sbit DHT11 = P1^4; //定义DHT11数据引脚 void Delay(unsigned int t) //延时函数 { unsigned int i, j; for(i=0; i<t; i++) for(j=0; j<120; j++); } void DHT11_Start() //DHT11启动函数 { DHT11 = 0; //拉低数据引脚 Delay(20); //延时20ms DHT11 = 1; //拉高数据引脚 Delay(30); //延时30us } unsigned char DHT11_Response() //DHT11响应函数 { unsigned char response = 0; Delay(40); if(!DHT11) //判断DHT11是否响应 { Delay(80); if(DHT11) //判断DHT11是否发出确认信号 response = 1; else response = -1; //若无响应则返回-1 } while(DHT11); //等待DHT11拉低数据引脚 return response; } unsigned char Read_DHT11() //读取DHT11数据 { unsigned char i, j; unsigned char data = 0; for(j=0; j<8; j++) { while(!DHT11); //等待DHT11拉高数据引脚 Delay(30); if(DHT11) //若数据为1则记录 { data |= (1<<(7-j)); } while(DHT11); //等待DHT11拉低数据引脚 } return data; } void main() { unsigned char humi_data, temp_data, check_data; while(1) { DHT11_Start(); //启动DHT11 if(DHT11_Response() == 1) //判断DHT11是否响应 { humi_data = Read_DHT11(); //读取湿度数据 temp_data = Read_DHT11(); //读取温度数据 check_data = Read_DHT11(); //读取校验和 if((humi_data + temp_data) == check_data) //判断校验和是否正确 { //将湿度和温度数据输出到串口或LCD等 } } Delay(500); //每500ms读取一次 } } ``` 注意事项: 1. DHT11的数据引脚需要接到51单片机的IO口上。 2. 在读取DHT11数据时需要按照数据格式进行读取,具体可以参考DHT11的数据手册。 3. 在读取数据之后需要进行校验和的检测,判断读取是否正确。

51单片机控制dht11并用lcd1602显示的代码

下面是一个基于51单片机控制DHT11并用LCD1602显示的简单代码: ```c #include <reg51.h> #include <stdio.h> #include <intrins.h> #define DHT11_PIN P2_0 // DHT11数据线连接的单片机引脚 #define LCD_RS P0_0 // LCD1602的RS引脚 #define LCD_RW P0_1 // LCD1602的RW引脚 #define LCD_EN P0_2 // LCD1602的EN引脚 #define LCD_DAT P1 // LCD1602的数据线 unsigned char dht11_data[5]; void delay(unsigned int x) { unsigned int i, j; for (i = 0; i < x; i++) { for (j = 0; j < 125; j++); } } void lcd_write_cmd(unsigned char cmd) { LCD_RS = 0; LCD_RW = 0; LCD_EN = 0; LCD_DAT = cmd; delay(1); LCD_EN = 1; delay(1); LCD_EN = 0; delay(1); } void lcd_write_data(unsigned char dat) { LCD_RS = 1; LCD_RW = 0; LCD_EN = 0; LCD_DAT = dat; delay(1); LCD_EN = 1; delay(1); LCD_EN = 0; delay(1); } void lcd_init() { lcd_write_cmd(0x38); lcd_write_cmd(0x0c); lcd_write_cmd(0x06); lcd_write_cmd(0x01); } void lcd_display_string(unsigned char x, unsigned char y, unsigned char *p) { unsigned char addr; if (y == 0) { addr = 0x80 + x; } else { addr = 0xc0 + x; } lcd_write_cmd(addr); while (*p) { lcd_write_data(*p++); } } void dht11_init() { DHT11_PIN = 1; delay(500); } unsigned char dht11_read_byte() { unsigned char i, dat; dat = 0; for (i = 0; i < 8; i++) { while (!DHT11_PIN); delay(30); if (DHT11_PIN == 0) { dat <<= 1; } else { dat = (dat << 1) | 0x01; } while (DHT11_PIN); } return dat; } void dht11_read_data() { unsigned char i, checksum; DHT11_PIN = 0; delay(20); DHT11_PIN = 1; while (DHT11_PIN); while (!DHT11_PIN); while (DHT11_PIN); for (i = 0; i < 5; i++) { dht11_data[i] = dht11_read_byte(); } DHT11_PIN = 1; checksum = dht11_data[0] + dht11_data[1] + dht11_data[2] + dht11_data[3]; if (checksum != dht11_data[4]) { lcd_display_string(0, 1, "Checksum Error!"); } else { lcd_display_string(0, 1, "Temp:"); lcd_write_data(dht11_data[0] / 10 + '0'); lcd_write_data(dht11_data[0] % 10 + '0'); lcd_write_data('.'); lcd_write_data(dht11_data[1] / 10 + '0'); lcd_write_data(dht11_data[1] % 10 + '0'); lcd_write_data('C'); lcd_display_string(8, 1, "Hum:"); lcd_write_data(dht11_data[2] / 10 + '0'); lcd_write_data(dht11_data[2] % 10 + '0'); lcd_write_data('.'); lcd_write_data(dht11_data[3] / 10 + '0'); lcd_write_data(dht11_data[3] % 10 + '0'); lcd_write_data('%'); } } void main() { lcd_init(); lcd_display_string(0, 0, "DHT11 Temperature"); lcd_display_string(0, 1, "and Humidity Test"); delay(2000); while (1) { dht11_init(); dht11_read_data(); delay(2000); } } ``` 这个代码使用了51单片机来读取DHT11传感器的温度和湿度值,并通过LCD1602显示出来。具体实现过程中,我们需要先初始化LCD1602,然后在主函数中循环读取DHT11传感器的数据,并将温度和湿度值显示到LCD1602上。需要注意的是,DHT11传感器的数据读取过程是比较复杂的,需要按照一定的时序和协议进行操作。

相关推荐

最新推荐

51单片机与DHT11实现温湿度采集

51单片机与DHT11实现温湿度采集,用12864液晶显示,c语言编程!

基于51单片机的智能家居环境监测系统论文.doc

本论文是基于51单片机技术的智能家居环境监测系统参考论文,包含DHT11温湿度采集,MQ-2烟雾浓度采集,LCD1602实时显示,蜂鸣器和LED组成的声光报警等部分电路的参考与选定

2021数学建模美赛C题代码.zip

最全的数学建模美赛C题和代码、大量刷题题库、逻辑清晰易于学习

这是一个保存Springboot+MyBaits项目的仓库.zip

springboot框架 一、Spring Boot基础应用 Spring Boot特征 概念: 约定优于配置,简单来说就是你所期待的配置与约定的配置一致,那么就可以不做任何配置,约定不符合期待时才需要对约定进行替换配置。 特征: 1. SpringBoot Starter:他将常用的依赖分组进行了整合,将其合并到一个依赖中,这样就可以一次性添加到项目的Maven或Gradle构建中。 2,使编码变得简单,SpringBoot采用 JavaConfig的方式对Spring进行配置,并且提供了大量的注解,极大的提高了工作效率,比如@Configuration和@bean注解结合,基于@Configuration完成类扫描,基于@bean注解把返回值注入IOC容器。 3.自动配置:SpringBoot的自动配置特性利用了Spring对条件化配置的支持,合理地推测应用所需的bean并自动化配置他们。 4.使部署变得简单,SpringBoot内置了三种Servlet容器,Tomcat,Jetty,undertow.我们只需要一个Java的运行环境就可以跑SpringBoot的项目了

课设&大作业-毕业设计精品课程网站,采用的技术是 SSM 框架和 Shiro.zip

【资源说明】【毕业设计】 1、该资源内项目代码都是经过测试运行成功,功能正常的情况下才上传的,请放心下载使用。 2、适用人群:主要针对计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、数学、电子信息等)的同学或企业员工下载使用,具有较高的学习借鉴价值。 3、不仅适合小白学习实战练习,也可作为大作业、课程设计、毕设项目、初期项目立项演示等,欢迎下载,互相学习,共同进步!

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

爬虫与大数据分析:挖掘数据价值,洞察趋势

![python网站爬虫技术实战](https://img-blog.csdnimg.cn/20181107141901441.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hpaGVsbA==,size_16,color_FFFFFF,t_70) # 1. 爬虫基础与技术** 爬虫,又称网络蜘蛛,是一种自动化的程序,用于从互联网上抓取数据。其工作原理是模拟浏览器行为,通过发送请求并解析响应来获取网页内容。 爬虫技术涉及多种技术,

matchers和find

matchers和find是C++标准库中的两个相关函数。 matchers是用于对字符串进行模式匹配的函数。它接受一个正则表达式作为参数,并在给定的字符串中搜索匹配的模式。如果找到匹配的模式,则返回true;否则返回false。matchers可以用于各种字符串操作,如搜索、替换、验证等。 find是用于在容器中查找特定元素的函数。它接受一个起始迭代器和一个结束迭代器作为参数,并在指定范围内搜索匹配的元素。如果找到匹配的元素,则返回指向该元素的迭代器;否则返回结束迭代器。find可以用于各种容器类型,如数组、向量、列表、集合等。 这两个函数在不同的上下文中有不同的应用场景,但都是用于查

建筑供配电系统相关课件.pptx

建筑供配电系统是建筑中的重要组成部分,负责为建筑内的设备和设施提供电力支持。在建筑供配电系统相关课件中介绍了建筑供配电系统的基本知识,其中提到了电路的基本概念。电路是电流流经的路径,由电源、负载、开关、保护装置和导线等组成。在电路中,涉及到电流、电压、电功率和电阻等基本物理量。电流是单位时间内电路中产生或消耗的电能,而电功率则是电流在单位时间内的功率。另外,电路的工作状态包括开路状态、短路状态和额定工作状态,各种电气设备都有其额定值,在满足这些额定条件下,电路处于正常工作状态。而交流电则是实际电力网中使用的电力形式,按照正弦规律变化,即使在需要直流电的行业也多是通过交流电整流获得。 建筑供配电系统的设计和运行是建筑工程中一个至关重要的环节,其正确性和稳定性直接关系到建筑物内部设备的正常运行和电力安全。通过了解建筑供配电系统的基本知识,可以更好地理解和应用这些原理,从而提高建筑电力系统的效率和可靠性。在课件中介绍了电工基本知识,包括电路的基本概念、电路的基本物理量和电路的工作状态。这些知识不仅对电气工程师和建筑设计师有用,也对一般人了解电力系统和用电有所帮助。 值得一提的是,建筑供配电系统在建筑工程中的重要性不仅仅是提供电力支持,更是为了确保建筑物的安全性。在建筑供配电系统设计中必须考虑到保护装置的设置,以确保电路在发生故障时及时切断电源,避免潜在危险。此外,在电气设备的选型和布置时也需要根据建筑的特点和需求进行合理规划,以提高电力系统的稳定性和安全性。 在实际应用中,建筑供配电系统的设计和建设需要考虑多个方面的因素,如建筑物的类型、规模、用途、电力需求、安全标准等。通过合理的设计和施工,可以确保建筑供配电系统的正常运行和安全性。同时,在建筑供配电系统的维护和管理方面也需要重视,定期检查和维护电气设备,及时发现和解决问题,以确保建筑物内部设备的正常使用。 总的来说,建筑供配电系统是建筑工程中不可或缺的一部分,其重要性不言而喻。通过学习建筑供配电系统的相关知识,可以更好地理解和应用这些原理,提高建筑电力系统的效率和可靠性,确保建筑物内部设备的正常运行和电力安全。建筑供配电系统的设计、建设、维护和管理都需要严谨细致,只有这样才能确保建筑物的电力系统稳定、安全、高效地运行。