# 读取数据集 data = pd.read_csv('./ebs/waveform-5000.csv') epsilon = 1e-10 # 去除第一行数据(属性名称) data = data.iloc[1:] # 提取属性列和类别列 X = data.iloc[:, :-1].values.astype(float) #x表示属性 y_true = data.iloc[:, -1].values #y表示类别,最后一列 # 数据标准化 scaler = MinMaxScaler(feature_range=(0, 1)) X_scaled = scaler.fit_transform(X) # 初始化NMF模型 n_components = range(2, 20) # 不同的n_components值 silhouette_scores = [] # 存储每个n_components的轮廓系数 best_silhouette_score = -1 best_n_components = -1 # 对不同的n_components进行迭代 for n in n_components: nmf = NMF(n_components=n) features = nmf.fit_transform(X_scaled) labels = nmf.transform(X_scaled).argmax(axis=1) # labels2 = nmf.components_.argmax(axis=1) # 根据聚类结果计算轮廓系数 # silhouette_avg = silhouette_score(X_scaled, labels) silhouette_avg = calinski_harabasz_score(X_scaled, labels) silhouette_scores.append(silhouette_avg) print(f"n_components={n}: Silhouette Score = {silhouette_avg}") # 选择最佳的n_components if silhouette_avg > best_silhouette_score: best_silhouette_score = silhouette_avg best_n_components = n print(f"best n_components = {best_n_components}") # 绘制得分图 plt.plot(n_components, silhouette_scores, marker='o') plt.title("NMF Clustering Performance") plt.xlabel("n_components") plt.ylabel("Silhouette Score") plt.show() print(f"best n_components = {best_n_components}") print(f"best Silhouette Score = {best_silhouette_score}") # 使用最佳的n_components进行聚类 best_nmf = NMF(n_components=best_n_components) best_features = best_nmf.fit_transform(X_scaled) # labels = best_nmf.components_.argmax(axis=1) labels = best_nmf.transform(X_scaled).argmax(axis=1) # 使用PCA进行降维和可视化 pca = PCA(n_components=2) X_pca = pca.fit_transform(X_scaled) # 可视化聚类结果 plt.scatter(X_pca[:, 0], X_pca[:, 1], c=labels) plt.title(f"NMF Clustering (n_components={best_n_components}) with PCA Visualization") plt.xlabel("Principal Component 1") plt.ylabel("Principal Component 2") plt.show()中文解析代码流程和步骤

时间: 2024-04-04 20:35:10 浏览: 87
这段代码实现了对一个数据集进行聚类分析的过程,具体流程如下: 1. 读取数据集 使用pandas库中的read_csv函数读取csv格式的数据文件,存储为data变量。 2. 数据预处理 去除第一行数据(属性名称),并将属性列和类别列分别存储为X和y_true变量。使用MinMaxScaler对属性列进行归一化处理,存储为X_scaled变量。 3. 初始化NMF模型 定义一个range(2,20)的n_components值列表,表示不同的聚类簇数。使用NMF类初始化模型,并对不同的n_components进行迭代训练。对于每个n_components,使用fit_transform函数计算特征矩阵features和标签矩阵labels。使用calinski_harabasz_score函数计算聚类结果的轮廓系数,并将结果存储在silhouette_scores列表中。 4. 选择最佳的n_components 对于每个n_components,比较其对应的轮廓系数与当前最高轮廓系数,如果更高则更新最高轮廓系数和最佳的n_components值。 5. 聚类分析 使用最佳的n_components值重新训练NMF模型,得到特征矩阵best_features和标签矩阵labels。使用PCA进行降维,将属性列降为二维,存储为X_pca变量。使用散点图可视化聚类结果,横坐标和纵坐标分别为X_pca的两个主成分,颜色表示不同的聚类簇。 总之,这段代码展示了一个完整的数据聚类分析过程,包括数据预处理、模型训练、结果评估和可视化等步骤。
相关问题

指针是如何运用的 auto ebits = ebs.begin(); while (ebits != ebs.end()) { //敌机子弹和主机碰撞模拟,HP-- if (RectDuangRect((*ebits)->GetRect(), hero.GetRect())) { delete(*ebits); ebits = ebs.erase(ebits); HP--; if (HP == 0) is_play = false; RECT a = hero.GetRect(); putimg(NULL, a.left, a.top, &sbombimg); break; }

在上述代码中,指针的运用如下: 1. 首先,使用`auto`关键字声明了一个名为`ebits`的变量,并将其初始化为`ebs`容器的起始迭代器。 2. 使用`while`循环遍历`ebs`容器中的元素,直到`ebits`迭代器等于`ebs.end()`,即到达容器的末尾。 3. 在循环中,通过解引用指针迭代器`(*ebits)`获取指向敌机子弹对象的指针,并调用其成员函数`GetRect()`获取敌机子弹的矩形区域。 4. 利用函数`RectDuangRect()`判断敌机子弹的矩形区域与主机的矩形区域是否相交,如果相交则进行碰撞模拟。 5. 如果发生碰撞,首先删除敌机子弹对象,通过`delete`关键字释放内存。 6. 调用容器的`erase()`函数删除指向该敌机子弹对象的迭代器,并返回指向下一个元素的迭代器。 7. 主机的HP减少1,如果HP减少到0,将`is_play`标志设置为`false`,表示游戏结束。 8. 获取主机的矩形区域,并使用函数`putimg()`在该区域绘制爆炸效果。 9. 使用`break`语句退出循环,只处理第一个碰撞的敌机子弹。

<![CDATA[ {call xsr_xz_ba_ebs_d_pkg.down_mtl_zhbm(p_upt_date = to_date(#{p_upt_date,jdbcType=VARCHAR},'yyyy-MM-dd'), p_svr_id = 1,p_db_lnk = xzfs, #{flag,mode=OUT,jdbcType=DECIMAL},#{msg,mode=OUT,jdbcType=VARCHAR})} ]]>

这段代码是一个SQL语句的调用,使用了CDATA标记来包裹SQL语句的内容。CDATA标记的作用是将其中的内容视为纯文本,防止其中的特殊字符被解析器错误解释。 在这段代码中,除了使用了CDATA标记,还使用了to_date()函数来将日期字符串转换为日期类型。to_date()函数接受两个参数,第一个参数是日期字符串,第二个参数是日期字符串的格式。在这里,#{p_upt_date}被传递给to_date()函数,其格式为'yyyy-MM-dd',表示日期字符串的格式是年-月-日。 除了to_date()函数,还使用了四个占位符作为参数。其中,p_upt_date、p_svr_id和p_db_lnk分别表示p_upt_date、p_svr_id和p_db_lnk三个参数。在这里,p_svr_id的值被设置为1,p_db_lnk的值被设置为xzfs。 #{flag}和#{msg}则被指定为输出参数,通过mode属性的值OUT来表示。 总体来说,这段代码是在调用一个名为"xsr_xz_ba_ebs_d_pkg.down_mtl_zhbm"的存储过程或函数。它传递了p_upt_date、p_svr_id和p_db_lnk三个输入参数,并且期望从该过程或函数中获取flag和msg两个输出参数的结果。具体的实现细节还需要查看代码的上下文和相关文档来确定。
阅读全文

相关推荐

最新推荐

recommend-type

Oracle ebs ASCP方案设置测试文档-ASCP测试

Oracle EBS ASCP 方案设置测试文档-ASCP 测试 本文档旨在介绍 Oracle EBS ASCP(高级计划排程)模块的方案及相关对应的设置测试文档,涵盖了 ASCP 的设置和流程。通过本文档,读者可以学习整个 ASCP 的设置和流程。...
recommend-type

oracle EBS基本概念.

Oracle EBS,全称为Oracle Enterprise Business Suite,是一个全面的企业级应用套件,旨在帮助企业管理和优化其业务流程。本文将深入探讨EBS中的基本概念,包括组织结构、关键术语、模块间的关系以及键弹性域和说明...
recommend-type

EBS常用数据表---学oracle erp的很有用的哦

EBS常用数据表,学oracle erp的很有用的哦。大家努力下吧。呵呵
recommend-type

Oracle ebs AP基表和总账关联

Oracle ebs AP基表和总账关联表结构Oracle ebs AP基表和总账关联表结构
recommend-type

ta-lib-0.5.1-cp312-cp312-win32.whl

ta_lib-0.5.1-cp312-cp312-win32.whl
recommend-type

MATLAB实现小波阈值去噪:Visushrink硬软算法对比

资源摘要信息:"本资源提供了一套基于MATLAB实现的小波阈值去噪算法代码。用户可以通过运行主文件"project.m"来执行该去噪算法,并观察到对一张256x256像素的黑白“莱娜”图片进行去噪的全过程。此算法包括了添加AWGN(加性高斯白噪声)的过程,并展示了通过Visushrink硬阈值和软阈值方法对图像去噪的对比结果。此外,该实现还包括了对图像信噪比(SNR)的计算以及将噪声图像和去噪后的图像的打印输出。Visushrink算法的参考代码由M.Kiran Kumar提供,可以在Mathworks网站上找到。去噪过程中涉及到的Lipschitz指数计算,是基于Venkatakrishnan等人的研究,使用小波变换模量极大值(WTMM)的方法来测量。" 知识点详细说明: 1. MATLAB环境使用:本代码要求用户在MATLAB环境下运行。MATLAB是一种高性能的数值计算和可视化环境,广泛应用于工程计算、算法开发和数据分析等领域。 2. 小波阈值去噪:小波去噪是信号处理中的一个技术,用于从信号中去除噪声。该技术利用小波变换将信号分解到不同尺度的子带,然后根据信号与噪声在小波域中的特性差异,通过设置阈值来消除或减少噪声成分。 3. Visushrink算法:Visushrink算法是一种小波阈值去噪方法,由Donoho和Johnstone提出。该算法的硬阈值和软阈值是两种不同的阈值处理策略,硬阈值会将小波系数小于阈值的部分置零,而软阈值则会将这部分系数缩减到零。硬阈值去噪后的信号可能有更多震荡,而软阈值去噪后的信号更为平滑。 4. AWGN(加性高斯白噪声)添加:在模拟真实信号处理场景时,通常需要对原始信号添加噪声。AWGN是一种常见且广泛使用的噪声模型,它假设噪声是均值为零、方差为N0/2的高斯分布,并且与信号不相关。 5. 图像处理:该实现包含了图像处理的相关知识,包括图像的读取、显示和噪声添加。此外,还涉及了图像去噪前后视觉效果的对比展示。 6. 信噪比(SNR)计算:信噪比是衡量信号质量的一个重要指标,反映了信号中有效信息与噪声的比例。在图像去噪的过程中,通常会计算并比较去噪前后图像的SNR值,以评估去噪效果。 7. Lipschitz指数计算:Lipschitz指数是衡量信号局部变化复杂性的一个量度,通常用于描述信号在某个尺度下的变化规律。在小波去噪过程中,Lipschitz指数可用于确定是否保留某个小波系数,因为它与信号的奇异性相关联。 8. WTMM(小波变换模量极大值):小波变换模量极大值方法是一种小波分析技术,用于检测信号中的奇异点或边缘。该技术通过寻找小波系数模量极大值的变化来推断信号的局部特征。 9. 系统开源:该资源被标记为“系统开源”,意味着该MATLAB代码及其相关文件是可以公开访问和自由使用的。开源资源为研究人员和开发者提供了学习和实验的机会,有助于知识共享和技术发展。 资源的文件结构包括"Wavelet-Based-Denoising-MATLAB-Code-master",表明用户获取的是一套完整的项目文件夹,其中包含了执行小波去噪算法所需的所有相关文件和脚本。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【交互特征的影响】:分类问题中的深入探讨,如何正确应用交互特征

![【交互特征的影响】:分类问题中的深入探讨,如何正确应用交互特征](https://img-blog.csdnimg.cn/img_convert/21b6bb90fa40d2020de35150fc359908.png) # 1. 交互特征在分类问题中的重要性 在当今的机器学习领域,分类问题一直占据着核心地位。理解并有效利用数据中的交互特征对于提高分类模型的性能至关重要。本章将介绍交互特征在分类问题中的基础重要性,以及为什么它们在现代数据科学中变得越来越不可或缺。 ## 1.1 交互特征在模型性能中的作用 交互特征能够捕捉到数据中的非线性关系,这对于模型理解和预测复杂模式至关重要。例如
recommend-type

c语言从链式队列 中获取头部元素并返回其状态的函数怎么写

在 C 语言中,如果你有一个链式队列的数据结构,通常它会包含两个指针,一个指向队首(front),一个指向队尾(rear)。以下是一个简单的链式队列头部元素获取函数的示例,假设 `Queue` 是你的链式队列结构体,并且已经包含了必要的成员变量: ```c typedef struct Queue { void* data; // 存储数据的指针 struct Queue* front; // 队首指针 struct Queue* rear; // 队尾指针 } Queue; // 获取头部元素并检查是否为空(如果队列为空,返回 NULL 或适当错误值) void*
recommend-type

易语言实现画板图像缩放功能教程

资源摘要信息:"易语言是一种基于中文的编程语言,主要面向中文用户,其特点是使用中文关键词和语法结构,使得中文使用者更容易理解和编写程序。易语言画板图像缩放源码是易语言编写的程序代码,用于实现图形用户界面中的画板组件上图像的缩放功能。通过这个源码,用户可以调整画板上图像的大小,从而满足不同的显示需求。它可能涉及到的图形处理技术包括图像的获取、缩放算法的实现以及图像的重新绘制等。缩放算法通常可以分为两大类:高质量算法和快速算法。高质量算法如双线性插值和双三次插值,这些算法在图像缩放时能够保持图像的清晰度和细节。快速算法如最近邻插值和快速放大技术,这些方法在处理速度上更快,但可能会牺牲一些图像质量。根据描述和标签,可以推测该源码主要面向图形图像处理爱好者或专业人员,目的是提供一种方便易用的方法来实现图像缩放功能。由于源码文件名称为'画板图像缩放.e',可以推断该文件是一个易语言项目文件,其中包含画板组件和图像处理的相关编程代码。" 易语言作为一种编程语言,其核心特点包括: 1. 中文编程:使用中文作为编程关键字,降低了学习编程的门槛,使得不熟悉英文的用户也能够编写程序。 2. 面向对象:易语言支持面向对象编程(OOP),这是一种编程范式,它使用对象及其接口来设计程序,以提高软件的重用性和模块化。 3. 组件丰富:易语言提供了丰富的组件库,用户可以通过拖放的方式快速搭建图形用户界面。 4. 简单易学:由于语法简单直观,易语言非常适合初学者学习,同时也能够满足专业人士对快速开发的需求。 5. 开发环境:易语言提供了集成开发环境(IDE),其中包含了代码编辑器、调试器以及一系列辅助开发工具。 6. 跨平台:易语言支持在多个操作系统平台编译和运行程序,如Windows、Linux等。 7. 社区支持:易语言有着庞大的用户和开发社区,社区中有很多共享的资源和代码库,便于用户学习和解决编程中遇到的问题。 在处理图形图像方面,易语言能够: 1. 图像文件读写:支持常见的图像文件格式如JPEG、PNG、BMP等的读取和保存。 2. 图像处理功能:包括图像缩放、旋转、裁剪、颜色调整、滤镜效果等基本图像处理操作。 3. 图形绘制:易语言提供了丰富的绘图功能,包括直线、矩形、圆形、多边形等基本图形的绘制,以及文字的输出。 4. 图像缩放算法:易语言实现的画板图像缩放功能中可能使用了特定的缩放算法来优化图像的显示效果和性能。 易语言画板图像缩放源码的实现可能涉及到以下几个方面: 1. 获取画板上的图像:首先需要从画板组件中获取到用户当前绘制或已经存在的图像数据。 2. 图像缩放算法的应用:根据用户的需求,应用适当的图像缩放算法对获取的图像数据进行处理。 3. 图像重新绘制:处理后的图像数据需要重新绘制到画板上,以实现缩放后的效果。 4. 用户交互:提供用户界面,让用户能够通过按钮、滑块等控件选择缩放比例和模式,以及触发缩放操作。 5. 性能优化:为了确保图像缩放操作流畅,需要考虑代码的执行效率和资源的合理利用。 在易语言社区中,用户可以根据自己的需求修改和扩展画板图像缩放源码,或者根据提供的API进一步开发更多高级图像处理功能,从而丰富软件的功能和用户体验。