pytorch完成1DCNN对特征进行提取
时间: 2023-05-28 15:05:55 浏览: 158
CNN_classification_feature_extraction:PyTorch中的CNN模型用于分类和特征提取
5星 · 资源好评率100%
首先,我们需要导入PyTorch和其他所需的模块。
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
```
接下来,我们可以定义我们的1D卷积神经网络模型。
```python
class CNN1D(nn.Module):
def __init__(self, input_size, output_size, kernel_size=3, stride=1, padding=1):
super(CNN1D, self).__init__()
self.conv1 = nn.Conv1d(input_size, 32, kernel_size=kernel_size, stride=stride, padding=padding)
self.conv2 = nn.Conv1d(32, 64, kernel_size=kernel_size, stride=stride, padding=padding)
self.pool = nn.MaxPool1d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(64 * 125, 128)
self.fc2 = nn.Linear(128, output_size)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 64 * 125)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
```
这个模型有两个卷积层,每个卷积层都有32和64个过滤器,分别用于提取32和64个特征。在每个卷积层之后,我们使用Max Pooling来减少输入的大小。然后,我们将数据展平并将其传递到两个全连接层中,以得到最终的输出。
接下来,我们可以定义我们的训练和测试函数。
```python
def train(model, device, train_loader, optimizer, criterion):
model.train()
train_loss = 0
correct = 0
for data, target in train_loader:
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
train_loss /= len(train_loader.dataset)
accuracy = 100. * correct / len(train_loader.dataset)
return train_loss, accuracy
def test(model, device, test_loader, criterion):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
return test_loss, accuracy
```
在这些函数中,我们使用PyTorch的优化器来更新模型参数,以最小化损失。我们还使用PyTorch的Cross Entropy损失作为我们的损失函数。
最后,我们可以训练我们的模型并测试其性能。
```python
input_size = 1
output_size = 10
lr = 0.001
epochs = 10
batch_size = 64
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, shuffle=False)
model = CNN1D(input_size, output_size).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
criterion = nn.CrossEntropyLoss()
for epoch in range(1, epochs + 1):
train_loss, train_accuracy = train(model, device, train_loader, optimizer, criterion)
test_loss, test_accuracy = test(model, device, test_loader, criterion)
print('Epoch: {} \tTraining Loss: {:.6f} \tTraining Accuracy: {:.2f}% \tTest Loss: {:.6f} \tTest Accuracy: {:.2f}%'.format(
epoch, train_loss, train_accuracy, test_loss, test_accuracy))
```
在训练和测试期间,我们使用PyTorch的DataLoader来加载数据,并将其传递给我们的模型。每个时期,我们计算训练和测试损失和准确性,并将其打印出来。
阅读全文