用python代码实现这个算法
时间: 2024-10-16 09:16:25 浏览: 24
要使用Python实现加权判别极限学习机(WDELM),您可以参考以下伪代码,并将其转换为实际的Python代码:
首先定义一些基础函数和类,用于数据预处理以及基本运算:
```python
import numpy as np
from scipy.linalg import inv
def moving_average_filter(signal, window_size):
"""对信号进行移动平均滤波"""
filtered_signal = []
for i in range(window_size - 1, len(signal)):
window = signal[i - window_size + 1 : i + 1]
filtered_value = (sum(window) - max(window) - min(window)) / (window_size - 2)
filtered_signal.append(filtered_value)
return np.array(filtered_signal)
class WDELM:
def __init__(self, lambda_param, t, max_iterations):
self.lambda_param = lambda_param # 正则化参数
self.t = t # 权重强度控制参数
self.max_iterations = max_iterations
def _initialize_weights(self, input_dim):
# 初始化权重矩阵
pass
def fit(self, X, y):
# 训练模型
pass
def predict(self, X):
# 预测新样本的类别
pass
```
接着,在`WDELM`类中实现具体的训练逻辑:
```python
class WDELM:
...
def fit(self, X, y):
# 将输入转化为适当格式
X = np.array(X)
y = np.array(y)
# 数据预处理步骤
# 这里可以添加例如归一化等预处理操作
# 获取必要变量
n_samples, n_features = X.shape
_, n_classes = y.shape
# 初始化未知矩阵
M = np.zeros((n_samples, n_classes))
B = np.zeros((n_features, n_classes))
# 构建权重矩阵
W = np.diag([1 / np.power(np.sum(y[:, c]), self.t) for c in range(n_classes)])
for _ in range(self.max_iterations):
# 更新B
Hw = W @ X
G = inv(X.T @ Hw + self.lambda_param * np.eye(n_features)) @ X.T @ Hw
T = W @ y + (np.sign(y) * M)
B_new = G @ T
# 更新M
R = W @ (X @ B_new - y)
M_new = np.maximum(0, (np.sign(y) * R))
# 检查收敛性
if np.linalg.norm(B_new - B) < 1e-3:
break
B, M = B_new, M_new
self.B = B
def predict(self, X):
# 使用已学得的权重预测新样本
predictions = X @ self.B
return np.argmax(predictions, axis=1)
```
以上仅为一个简化版本,实际应用时可能需要进一步优化与调试。请注意在实际编程环境中导入必要的库并完成其他细节部分的实现。
阅读全文