51单片机电子时钟keil5

时间: 2023-11-22 18:04:50 浏览: 391
UVPROJ

51单片机电子时钟

以下是基于51单片机的电子时钟设计的步骤: 1. 硬件设计:选择合适的晶振和LCD显示屏,连接好电路。 2. 软件设计:使用Keil5编写C语言程序,实现以下功能: (1)初始化:设置定时器、中断、端口等参数。 (2)获取时间:通过定时器中断获取当前时间,并将其转换为时、分、秒的形式。 (3)显示时间:将获取到的时间显示在LCD屏幕上。 (4)调整时间:通过按键控制,可以调整时、分、秒的值。 (5)闹钟功能:设置闹钟时间,到达闹钟时间时,发出蜂鸣器提示。 3. 调试:将程序下载到单片机上,通过调试工具进行调试,确保程序正常运行。 ```c // 以下是基于51单片机的电子时钟设计的C语言程序 #include <reg52.h> #include <intrins.h> #define uchar unsigned char #define uint unsigned int sbit RS = P2^6; // LCD1602的RS引脚 sbit RW = P2^5; // LCD1602的RW引脚 sbit EN = P2^7; // LCD1602的EN引脚 uchar code table[] = "20123456789"; // 数码管显示表 uchar hour = 0, minute = 0, second = 0; // 时、分、秒 uchar alarm_hour = 0, alarm_minute = 0; // 闹钟时、分 bit alarm_flag = 0; // 闹钟标志位 void delay(uint xms) // 延时函数 { uint i, j; for (i = xms; i > 0; i--) for (j = 110; j > 0; j--); } void LCD_WriteCommand(uchar com) // 写命令函数 { RS = 0; RW = 0; P0 = com; EN = 1; _nop_(); EN = 0; delay(5); } void LCD_WriteData(uchar dat) // 写数据函数 { RS = 1; RW = 0; P0 = dat; EN = 1; _nop_(); EN = 0; delay(5); } void LCD_Init() // LCD1602初始化函数 { LCD_WriteCommand(0x38); // 显示模式设置:16*2显示,5*7点阵,8位数据接口 LCD_WriteCommand(0x0c); // 显示开关控制:显示开,光标关,光标闪烁关 LCD_WriteCommand(0x06); // 光标/显示移位:光标右移,字符不移动 LCD_WriteCommand(0x01); // 显示清屏 } void Timer0_Init() // 定时器0初始化函数 { TMOD &= 0xf0; TMOD |= 0x01; // 定时器0工作在模式1:16位定时器 TH0 = 0xfc; // 定时器初值,1ms TL0 = 0x18; ET0 = 1; // 允许定时器0中断 TR0 = 1; // 启动定时器0 } void Timer0_ISR() interrupt 1 // 定时器0中断服务函数 { TH0 = 0xfc; // 定时器初值,1ms TL0 = 0x18; second++; // 秒加1 if (second == 60) // 分钟加1 { second = 0; minute++; if (minute == 60) // 小时加1 { minute = 0; hour++; if (hour == 24) // 一天结束,从头开始 { hour = 0; } } } } void Key_Scan() // 按键扫描函数 { if (P3 != 0xff) // 检测到按键按下 { delay(10); // 延时去抖 if (P3 != 0xff) // 再次检测按键是否按下 { if (P3 == 0xfe) // K1按下,调整小时 { hour++; if (hour == 24) { hour = 0; } } else if (P3 == 0xfd) // K2按下,调整分钟 { minute++; if (minute == 60) { minute = 0; } } else if (P3 == 0xfb) // K3按下,调整闹钟小时 { alarm_hour++; if (alarm_hour == 24) { alarm_hour = 0; } } else if (P3 == 0xf7) // K4按下,调整闹钟分钟 { alarm_minute++; if (alarm_minute == 60) { alarm_minute = 0; } } } while (P3 != 0xff); // 等待按键释放 } } void Display_Time() // 显示时间函数 { uchar shiwei, gewei; shiwei = hour / 10; // 获取小时的十位数 gewei = hour % 10; // 获取小时的个位数 LCD_WriteCommand(0x80); // 光标移动到第一行第一列 LCD_WriteData(table[shiwei]); // 显示小时的十位数 LCD_WriteData(table[gewei]); // 显示小时的个位数 LCD_WriteData(':'); // 显示冒号 shiwei = minute / 10; // 获取分钟的十位数 gewei = minute % 10; // 获取分钟的个位数 LCD_WriteData(table[shiwei]); // 显示分钟的十位数 LCD_WriteData(table[gewei]); // 显示分钟的个位数 LCD_WriteData(':'); // 显示冒号 shiwei = second / 10; // 获取秒的十位数 gewei = second % 10; // 获取秒的个位数 LCD_WriteData(table[shiwei]); // 显示秒的十位数 LCD_WriteData(table[gewei]); // 显示秒的个位数 } void Alarm() // 闹钟函数 { if (hour == alarm_hour && minute == alarm_minute && alarm_flag == 0) // 到达闹钟时间 { alarm_flag = 1; // 设置闹钟标志位 P1 = 0x00; // 发出蜂鸣器提示 } } void main() { LCD_Init(); // LCD1602初始化 Timer0_Init(); // 定时器0初始化 EA = 1; // 允许中断 while (1) { Display_Time(); // 显示时间 Key_Scan(); // 按键扫描 Alarm(); // 闹钟 } } ```
阅读全文

相关推荐

最新推荐

recommend-type

直流电机控制Keil c51源代码

它将定时器 1 设置为工作模式 2,即 8 位自动重装模式,并将定时器的预置值设置为 `timer_data`,即 256-100=156,这表示定时器的时钟频率为 12M 时钟下的 0.1ms。然后,它将定时器启动,并允许中断。 在 `setting_...
recommend-type

单片机at89c51电子时钟论文

本文主要探讨了基于单片机AT89C51的电子时钟的设计与实现,涵盖了系统设计要求、硬件总体设计方案、软件总体设计方案以及课程设计的结果分析。该设计旨在利用单片机技术构建一个具备基本及扩展功能的电子时钟。 在...
recommend-type

利用单片机完成电子时钟的课程设计

通过这次课程设计,学生不仅掌握了MCS51单片机的原理和应用,还了解了电子时钟系统的设计流程和调试方法。这不仅锻炼了他们的实践能力,也加深了他们对单片机系统和嵌入式开发的理解。 参考文献的列出是为了提供...
recommend-type

51单片机定时器产生1Hz信号

硬件电路主要由51单片机芯片AT89C51、外接的时钟电路和复位电路、两个LED组成。LED的接法是采用负逻辑,对实际电路来说,这样接比较合适,容易驱动LED。 四、软件程序 (一)软件和定时器(中断方式)延时控制LED...
recommend-type

OPPO 推搜广多业务多场景的统一预估引擎实践 (1).pdf

OPPO 推搜广多业务多场景的统一预估引擎实践 (1).pdf
recommend-type

平尾装配工作平台运输支撑系统设计与应用

资源摘要信息:"该压缩包文件名为‘行业分类-设备装置-用于平尾装配工作平台的运输支撑系统.zip’,虽然没有提供具体的标签信息,但通过文件标题可以推断出其内容涉及的是航空或者相关重工业领域内的设备装置。从标题来看,该文件集中讲述的是有关平尾装配工作平台的运输支撑系统,这是一种专门用于支撑和运输飞机平尾装配的特殊设备。 平尾,即水平尾翼,是飞机尾部的一个关键部件,它对于飞机的稳定性和控制性起到至关重要的作用。平尾的装配工作通常需要在一个特定的平台上进行,这个平台不仅要保证装配过程中平尾的稳定,还需要适应平尾的搬运和运输。因此,设计出一个合适的运输支撑系统对于提高装配效率和保障装配质量至关重要。 从‘用于平尾装配工作平台的运输支撑系统.pdf’这一文件名称可以推断,该PDF文档应该是详细介绍这种支撑系统的构造、工作原理、使用方法以及其在平尾装配工作中的应用。文档可能包括以下内容: 1. 支撑系统的设计理念:介绍支撑系统设计的基本出发点,如便于操作、稳定性高、强度大、适应性强等。可能涉及的工程学原理、材料学选择和整体结构布局等内容。 2. 结构组件介绍:详细介绍支撑系统的各个组成部分,包括支撑框架、稳定装置、传动机构、导向装置、固定装置等。对于每一个部件的功能、材料构成、制造工艺、耐腐蚀性以及与其他部件的连接方式等都会有详细的描述。 3. 工作原理和操作流程:解释运输支撑系统是如何在装配过程中起到支撑作用的,包括如何调整支撑点以适应不同重量和尺寸的平尾,以及如何进行运输和对接。操作流程部分可能会包含操作步骤、安全措施、维护保养等。 4. 应用案例分析:可能包含实际操作中遇到的问题和解决方案,或是对不同机型平尾装配过程的支撑系统应用案例的详细描述,以此展示系统的实用性和适应性。 5. 技术参数和性能指标:列出支撑系统的具体技术参数,如载重能力、尺寸规格、工作范围、可调节范围、耐用性和可靠性指标等,以供参考和评估。 6. 安全和维护指南:对于支撑系统的使用安全提供指导,包括操作安全、应急处理、日常维护、定期检查和故障排除等内容。 该支撑系统作为专门针对平尾装配而设计的设备,对于飞机制造企业来说,掌握其详细信息是提高生产效率和保障产品质量的重要一环。同时,这种支撑系统的设计和应用也体现了现代工业在专用设备制造方面追求高效、安全和精确的趋势。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法探索:寻找随机性与确定性的平衡艺术

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法的基本概念与起源 遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索优化算法。起源于20世纪60年代末至70年代初,由John Holland及其学生和同事们在研究自适应系统时首次提出,其理论基础受到生物进化论的启发。遗传算法通过编码一个潜在解决方案的“基因”,构造初始种群,并通过选择、交叉(杂交)和变异等操作模拟生物进化过程,以迭代的方式不断优化和筛选出最适应环境的
recommend-type

如何在S7-200 SMART PLC中使用MB_Client指令实现Modbus TCP通信?请详细解释从连接建立到数据交换的完整步骤。

为了有效地掌握S7-200 SMART PLC中的MB_Client指令,以便实现Modbus TCP通信,建议参考《S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解》。本教程将引导您了解从连接建立到数据交换的整个过程,并详细解释每个步骤中的关键点。 参考资源链接:[S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解](https://wenku.csdn.net/doc/119yes2jcm?spm=1055.2569.3001.10343) 首先,确保您的S7-200 SMART CPU支持开放式用户通
recommend-type

MAX-MIN Ant System:用MATLAB解决旅行商问题

资源摘要信息:"Solve TSP by MMAS: Using MAX-MIN Ant System to solve Traveling Salesman Problem - matlab开发" 本资源为解决经典的旅行商问题(Traveling Salesman Problem, TSP)提供了一种基于蚁群算法(Ant Colony Optimization, ACO)的MAX-MIN蚁群系统(MAX-MIN Ant System, MMAS)的Matlab实现。旅行商问题是一个典型的优化问题,要求找到一条最短的路径,让旅行商访问每一个城市一次并返回起点。这个问题属于NP-hard问题,随着城市数量的增加,寻找最优解的难度急剧增加。 MAX-MIN Ant System是一种改进的蚁群优化算法,它在基本的蚁群算法的基础上,对信息素的更新规则进行了改进,以期避免过早收敛和局部最优的问题。MMAS算法通过限制信息素的上下界来确保算法的探索能力和避免过早收敛,它在某些情况下比经典的蚁群系统(Ant System, AS)和带有局部搜索的蚁群系统(Ant Colony System, ACS)更为有效。 在本Matlab实现中,用户可以通过调用ACO函数并传入一个TSP问题文件(例如"filename.tsp")来运行MMAS算法。该问题文件可以是任意的对称或非对称TSP实例,用户可以从特定的网站下载多种标准TSP问题实例,以供测试和研究使用。 使用此资源的用户需要注意,虽然该Matlab代码可以免费用于个人学习和研究目的,但若要用于商业用途,则需要联系作者获取相应的许可。作者的电子邮件地址为***。 此外,压缩包文件名为"MAX-MIN%20Ant%20System.zip",该压缩包包含Matlab代码文件和可能的示例数据文件。用户在使用之前需要将压缩包解压,并将文件放置在Matlab的适当工作目录中。 为了更好地理解和应用该资源,用户应当对蚁群优化算法有初步了解,尤其是对MAX-MIN蚁群系统的基本原理和运行机制有所掌握。此外,熟悉Matlab编程环境和拥有一定的编程经验将有助于用户根据个人需求修改和扩展算法。 在实际应用中,用户可以根据问题规模调整MMAS算法的参数,如蚂蚁数量、信息素蒸发率、信息素增量等,以获得最优的求解效果。此外,也可以结合其他启发式或元启发式算法,如遗传算法、模拟退火等,来进一步提高算法的性能。 总之,本资源为TSP问题的求解提供了一种有效的算法框架,且Matlab作为编程工具的易用性和强大的计算能力,使得该资源成为算法研究人员和工程技术人员的有力工具。通过本资源的应用,用户将能够深入探索并实现蚁群优化算法在实际问题中的应用,为解决复杂的优化问题提供一种新的思路和方法。