帮我写一个基于LSTM的多输入双输出回归预测模型的MATLAB代码
时间: 2024-03-30 07:34:10 浏览: 69
好的,以下是一个基于LSTM的多输入双输出回归预测模型的MATLAB代码:
```matlab
% Load data
load data.mat
% Define input data
X = [input1, input2, input3];
% Define output data
Y = [output1, output2];
% Normalize data
Xnorm = normalize(X);
Ynorm = normalize(Y);
% Split data into training and testing sets
trainRatio = 0.7;
valRatio = 0.15;
testRatio = 0.15;
[trainInd,valInd,testInd] = dividerand(size(Xnorm,1),trainRatio,valRatio,testRatio);
Xtrain = Xnorm(trainInd,:);
Ytrain = Ynorm(trainInd,:);
Xval = Xnorm(valInd,:);
Yval = Ynorm(valInd,:);
Xtest = Xnorm(testInd,:);
Ytest = Ynorm(testInd,:);
% Define LSTM network architecture
numFeatures = size(X,2);
numResponses = size(Y,2);
numHiddenUnits = 200;
layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits,'OutputMode','sequence')
dropoutLayer(0.2)
lstmLayer(numHiddenUnits,'OutputMode','last')
dropoutLayer(0.2)
fullyConnectedLayer(numResponses)
regressionLayer];
% Set training options
maxEpochs = 100;
miniBatchSize = 64;
initialLearnRate = 0.001;
options = trainingOptions('adam', ...
'MaxEpochs',maxEpochs, ...
'MiniBatchSize',miniBatchSize, ...
'InitialLearnRate',initialLearnRate, ...
'GradientThreshold',1, ...
'Shuffle','every-epoch', ...
'ValidationData',{Xval,Yval}, ...
'ValidationFrequency',30, ...
'Verbose',false, ...
'Plots','training-progress');
% Train LSTM network
net = trainNetwork(Xtrain,Ytrain,layers,options);
% Test LSTM network
YPred = predict(net,Xtest);
YPred = denormalize(YPred,Y);
% Evaluate performance
rmse = sqrt(mean((Ytest - YPred).^2));
r2 = 1 - sum((Ytest - YPred).^2)/sum((Ytest - mean(Ytest)).^2);
disp(['RMSE: ', num2str(rmse)])
disp(['R2 score: ', num2str(r2)])
```
需要注意的是,上述代码需要配合一个名为`data.mat`的数据文件使用,其中包含了输入数据(`input1`、`input2`、`input3`)和输出数据(`output1`、`output2`)。另外,代码中涉及到了数据归一化和反归一化的操作,这是为了确保输入输出数据在相同的尺度上,从而提高模型的训练和预测效果。
阅读全文