使用C++写一份红黑树的基本实现代码

时间: 2023-06-13 22:02:04 浏览: 59
以下是一个基本的红黑树实现的C代码,包括插入、删除、查找和打印操作: ```c #include <stdio.h> #include <stdlib.h> typedef enum { RED, BLACK } nodeColor; typedef struct rbNode { int key; nodeColor color; struct rbNode *left, *right, *parent; } rbNode; rbNode *newNode(int key) { rbNode *node = (rbNode *)malloc(sizeof(rbNode)); node->key = key; node->color = RED; node->left = node->right = node->parent = NULL; return node; } void rotateLeft(rbNode **root, rbNode *node) { rbNode *right = node->right; node->right = right->left; if (node->right != NULL) { node->right->parent = node; } right->parent = node->parent; if (node->parent == NULL) { *root = right; } else if (node == node->parent->left) { node->parent->left = right; } else { node->parent->right = right; } right->left = node; node->parent = right; } void rotateRight(rbNode **root, rbNode *node) { rbNode *left = node->left; node->left = left->right; if (node->left != NULL) { node->left->parent = node; } left->parent = node->parent; if (node->parent == NULL) { *root = left; } else if (node == node->parent->left) { node->parent->left = left; } else { node->parent->right = left; } left->right = node; node->parent = left; } void fixViolation(rbNode **root, rbNode *node) { rbNode *parent = NULL; rbNode *grandparent = NULL; while ((node != *root) && (node->color == RED) && (node->parent->color == RED)) { parent = node->parent; grandparent = parent->parent; if (parent == grandparent->left) { rbNode *uncle = grandparent->right; if (uncle != NULL && uncle->color == RED) { grandparent->color = RED; parent->color = BLACK; uncle->color = BLACK; node = grandparent; } else { if (node == parent->right) { rotateLeft(root, parent); node = parent; parent = node->parent; } rotateRight(root, grandparent); int tempColor = parent->color; parent->color = grandparent->color; grandparent->color = tempColor; node = parent; } } else { rbNode *uncle = grandparent->left; if ((uncle != NULL) && (uncle->color == RED)) { grandparent->color = RED; parent->color = BLACK; uncle->color = BLACK; node = grandparent; } else { if (node == parent->left) { rotateRight(root, parent); node = parent; parent = node->parent; } rotateLeft(root, grandparent); int tempColor = parent->color; parent->color = grandparent->color; grandparent->color = tempColor; node = parent; } } } (*root)->color = BLACK; } void insert(rbNode **root, int key) { rbNode *node = newNode(key); rbNode *parent = NULL; rbNode *current = *root; while (current != NULL) { parent = current; if (node->key < current->key) { current = current->left; } else { current = current->right; } } node->parent = parent; if (parent == NULL) { *root = node; } else if (node->key < parent->key) { parent->left = node; } else { parent->right = node; } fixViolation(root, node); } rbNode *minValueNode(rbNode *node) { rbNode *current = node; while (current->left != NULL) { current = current->left; } return current; } void fixDoubleBlack(rbNode **root, rbNode *node) { if (node == *root) { return; } rbNode *sibling = NULL; rbNode *parent = node->parent; if (node == parent->left) { sibling = parent->right; if (sibling->color == RED) { sibling->color = BLACK; parent->color = RED; rotateLeft(root, parent); sibling = parent->right; } if ((sibling->left == NULL || sibling->left->color == BLACK) && (sibling->right == NULL || sibling->right->color == BLACK)) { sibling->color = RED; if (parent->color == BLACK) { fixDoubleBlack(root, parent); } else { parent->color = BLACK; } } else { if (sibling->right == NULL || sibling->right->color == BLACK) { sibling->left->color = BLACK; sibling->color = RED; rotateRight(root, sibling); sibling = parent->right; } sibling->color = parent->color; parent->color = BLACK; sibling->right->color = BLACK; rotateLeft(root, parent); } } else { sibling = parent->left; if (sibling->color == RED) { sibling->color = BLACK; parent->color = RED; rotateRight(root, parent); sibling = parent->left; } if ((sibling->left == NULL || sibling->left->color == BLACK) && (sibling->right == NULL || sibling->right->color == BLACK)) { sibling->color = RED; if (parent->color == BLACK) { fixDoubleBlack(root, parent); } else { parent->color = BLACK; } } else { if (sibling->left == NULL || sibling->left->color == BLACK) { sibling->right->color = BLACK; sibling->color = RED; rotateLeft(root, sibling); sibling = parent->left; } sibling->color = parent->color; parent->color = BLACK; sibling->left->color = BLACK; rotateRight(root, parent); } } } void delete(rbNode **root, int key) { rbNode *node = *root; while (node != NULL) { if (key < node->key) { node = node->left; } else if (key > node->key) { node = node->right; } else { if (node->left == NULL || node->right == NULL) { rbNode *child = node->left ? node->left : node->right; if (child == NULL) { if (node->color == BLACK) { fixDoubleBlack(root, node); } if (node == *root) { *root = NULL; } else { if (node == node->parent->left) { node->parent->left = NULL; } else { node->parent->right = NULL; } } free(node); node = NULL; } else { *node = *child; free(child); } } else { rbNode *successor = minValueNode(node->right); node->key = successor->key; delete(root, successor->key); } break; } } } rbNode *search(rbNode *root, int key) { if (root == NULL || root->key == key) { return root; } if (key < root->key) { return search(root->left, key); } else { return search(root->right, key); } } void inorderTraversal(rbNode *node) { if (node == NULL) { return; } inorderTraversal(node->left); printf("%d ", node->key); inorderTraversal(node->right); } int main() { rbNode *root = NULL; insert(&root, 7); insert(&root, 3); insert(&root, 18); insert(&root, 10); insert(&root, 22); insert(&root, 8); insert(&root, 11); insert(&root, 26); printf("Inorder traversal before deletion: "); inorderTraversal(root); printf("\n"); delete(&root, 18); printf("Inorder traversal after deletion: "); inorderTraversal(root); printf("\n"); return 0; } ``` 这份代码实现了基本的红黑树功能,包括插入、删除、查找和打印。你可以根据需要对其进行修改和扩展。

相关推荐

最新推荐

recommend-type

C++获取特定进程CPU使用率的实现代码

写一个小程序在后台记录每个进程的CPU使用情况,揪出锁屏后占用CPU的进程,于是自己写了一个C++类CPUusage,方便地监视不同进程的CPU占用情况。本人编程还只是个新手,如有问题请多多指教
recommend-type

C++使用Kruskal和Prim算法实现最小生成树

主要介绍了C++使用Kruskal和Prim算法实现最小生成树,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

C++语言数据结构 串的基本操作实例代码

主要介绍了C语言数据结构 串的基本操作实例代码的相关资料,需要的朋友可以参考下
recommend-type

vscode使用官方C/C++插件无法进行代码格式化问题

官方的C/C++插件是支持使用.clang-format配置文件进行自定义风格代码格式化的,无需另外安装clang-format插件。 但是使用clang-format -style=llvm -dump-config &gt; .clang-format导出的默认配置文件进行格式化的时候...
recommend-type

使用C++调用Python代码的方法详解

主要介绍了使用C++调用Python代码并给大家介绍了.py和.pyc的区别,本文给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

spring添加xml配置文件

1. 创建一个新的Spring配置文件,例如"applicationContext.xml"。 2. 在文件头部添加XML命名空间和schema定义,如下所示: ``` <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。